Eigenfunctions of the Star graphs for all non-zero eigenvalues

Vladislav Kabanov
Krasovskii Institute of Mathematics and Mechanics
vvk(at)imm.uran.ru

This is joint work with E. Konstantinova, L. Shalaginov, A. Valyuzhenich

Let G be a finite group and S be a subset of G which does not contain the identity element and is closed under inversion. The Cayley graph Cay (G, S) is a graph with the vertex set G in which two vertices x, y are adjacent if and only if $x y^{-1} \in S$. For $\Omega=\{1, \ldots, n\}, n \geqslant 2$, we consider the symmetric group $\operatorname{Sym}_{\Omega}$ and put $S=\{(1 i) \mid i \in\{2, \ldots, n\}\}$. The Star graph $S_{n}=\operatorname{Cay}\left(\operatorname{Sym}_{\Omega}, S\right)$ is the Cayley graph over the symmetric group $\operatorname{Sym}_{\Omega}$ with the generating set S.

A function $f: V(\Gamma) \rightarrow \mathbb{R}$ is called an eigenfunction of a graph Γ corresponding to an eigenvalue θ if $f \not \equiv 0$ and the equality

$$
\begin{equation*}
\theta \cdot f(x)=\sum_{y \in N(x)} f(y) \tag{1}
\end{equation*}
$$

holds for any its vertex x, where $N(x)$ is the neighborhood of x in Γ.
The Star graph $S_{n}, n \geq 2$, is known to be integral (see [2]), and its spectrum consists of all integers in the range from $-(n-1)$ to $n-1$ (except 0 when $n=2,3$). Despite of the fact that spectral properties of the Star graph were studied (see $[1-3,5]$), no explicit construction for the eigenfunctions was known.

In [4], an explicit construction of eigenfunctions of $S_{n}, n \geq 3$, for all eigenvalues θ with $\frac{n-2}{2}<\theta<n-1$ was presented.

In this work, we generalize ideas from [4] and present eigenfunctions of the Star graph $S_{n}, n \geq 3$, for all its non-zero eigenvalues.

Acknowledgments. The work is supported by Mathematical Center in Akademgorodok, the agreement with Ministry of Science and High Education of the Russian Federation number 075-15-2019-1613.

References

[1] A. Abdollahi, E. Vatandoost, Which Cayley graphs are integral? The Electronic Journal of Combinatorics, 16 (2009) 6-7.
[2] G. Chapuy, V. Feray, A note on a Cayley graph of Sym $_{n}$, arXiv:1202.4976v2 (2012) 1-3.
[3] J. Friedman, On Cayley graphs on the symmetric group generated by transpositions, Combinatorica 20(4) (2000) 505-519.
[4] S. Goryainov, V. V. Kabanov, E. Konstantinova, L. Shalaginov, A. Valyuzhenich, PI-eigenfunctions of the Star graphs, Linear Algebra and its Applications, 586 (2020) 7-27.
[5] R. Krakovski, B. Mohar, Spectrum of Cayley graphs on the symmetric group generated by transposition, Linear Algebra and its Applications, 437 (2012) 1033-1039.

