Combinatorial limits and their applications in extremal combinatorics

Part 1

Dan Král'
Masaryk University and
University of Warwick

GRAPH LIMITS

- large networks \approx large graphs how to represent? how to model? how to generate?
- concise (analytic) representation of large graphs we implicitly use limits in our considerations anyway
- mathematics motivation - extremal graph theory What is a typical structure of an extremal graph? calculations avoiding smaller order terms
- this course: dense graphs $\left(|E|=\Omega\left(|V|^{2}\right)\right)$
- convergence vs. analytic representation

Overview of the course

- Introduction - dense graph convergence, graph limits limits of dense graphs, permutations and hypergraphs
- Graph and permutation quasirandomness via limits
- Flag algebra method and its relation to graph limits applications of flag algebra method in combinatorics
- Computer assisted use of flag algebras via SDP various examples of the use of the method

DENSE GRAPH CONVERGENCE

- convergence for dense graphs $\left(|E|=\Omega\left(|V|^{2}\right)\right)$
- $d(H, G)=$ probability $|H|$-vertex subgraph of G is H
- a sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ of graphs is convergent if $d\left(H, G_{n}\right)$ converges for every H
- extendable to other discrete structures

Convergent graph sequences

- complete graphs K_{n}
- complete bipartite graphs $K_{\alpha n, n}$
- Erdős-Rényi random graphs $G_{n, p}$
- any sequence of graphs with bounded maximum degree
- any sequence of planar graphs

Limit object: GRAPHON

- graphon $W:[0,1]^{2} \rightarrow[0,1]$
measurable symmetric function, i.e. $W(x, y)=W(y, x)$
- "limit of adjacency matrices" (very imprecise)
- points of $[0,1] \approx$ vertices, values of $W \approx$ edge density

W-RANDOM GRAPHS

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- W-random graph of order n
sample n random points $x_{i} \in[0,1] \approx$ vertices join two vertices by an edge with probability $W\left(x_{i}, x_{j}\right)$
- density of a graph H in a graphon W $d(H, W)=$ prob. $|H|$-vertex W-random graph is H

\square

W-RANDOM GRAPHS

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H

$$
\frac{|H|!}{|\operatorname{Aut}(H)|} \int_{[0,1]^{|H|}} \prod_{v_{i} v_{j}} W\left(x_{i}, x_{j}\right) \prod_{\bar{v}_{i} v_{j}}\left(1-W\left(x_{i}, x_{j}\right)\right) \mathrm{d} x_{1} \cdots x_{n}
$$

W-RANDOM GRAPHS

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H
- $d(H, W)=$ expected density of H in a W-random graph
- $d\left(K_{2}, W\right)=\frac{1}{3} d\left(\overline{K_{1,2}}, W\right)+\frac{2}{3} d\left(K_{1,2}, W\right)+d\left(K_{3}, W\right)$ Why? Integral. Random experiment.

W-RANDOM GRAPHS

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H
- $d(H, W)=$ expected density of H in a W-random graph
- W is a limit of $\left(G_{n}\right)_{n \in \mathbb{N}}$ if $d(H, W)=\lim _{n \rightarrow \infty} d\left(H, G_{n}\right)$

Questions?

Graphons AS LIMITS

- Does every convergent sequence have a limit?
- Uniqueness of a graphon representing a sequence.
- Is every graphon a limit of convergent sequence?

Uniqueness of The Limit

- $W^{\varphi}(x, y):=W(\varphi(x), \varphi(y))$ for $\varphi:[0,1] \rightarrow[0,1]$
- $d(H, W)=d\left(H, W^{\varphi}\right)$ if φ is measure preserving
- Theorem (Borgs, Chayes, Lovász)

If $d\left(H, W_{1}\right)=d\left(H, W_{2}\right)$ for all graphs H,
then there exist measure preserving maps φ_{1} and φ_{2} such that $W_{1}^{\varphi_{1}}=W_{2}^{\varphi_{2}}$ almost everywhere.

Questions?

Thank you for your attention!

