Combinatorial Methods in Group Theory (and Group-theoretic Methods in Combinatorics)

PhD Summer School, Rogla, July 2019

Marston Conder University of Auckland m.conder@auckland.ac.nz

Outline of topics

- 1. Basic applications of counting
- 2. Methods for generating random elements of a group
- 3. Cayley graphs
- 4. Schreier coset graphs and their applications
- 5. Back-track search to find small index subgroups
- 6. Double-coset graphs and some applications
- 7. Möbius inversion on lattices and applications

Copies of slides can be made available by <u>email</u> or <u>USB stick</u>.

$\S{0}$. Background on group theory

In this course, a relatively small amount of knowledge of group theory will be needed, namely the following:

- Definition and elementary properties of groups
- Some well known examples of groups e.g. C_n (cyclic), D_n (dihedral), A_n (alternating), S_n (symmetric)
- Subgroups, cosets, conjugacy, normal subgroups, factor groups, homomorphisms, isomorphisms, automorphisms
- Permutation groups (i.e. subgroups of symmetric groups)
- Generating sets for groups
- Presentation of groups by generators and relations.

Information about most of these things is available on Wikipedia.

$\S1$. Basic applications of counting

Many theorems in combinatorics can be proved by counting the same thing in two different ways – e.g. the 'hand-shaking lemma' in graph theory $(2|E(X)| = \sum_{v \in V(X)} \deg(v))$.

The same thing happens in aspects of group theory.

Theorem (The 'Orbit-Stabiliser Theorem') If *G* is a permutation group on a set Ω , and G_{α} and α^{G} are the stabiliser $\{g \in G \mid \alpha^{g} = \alpha\}$ and orbit $\{\alpha^{g} : g \in G\}$ of a point $\alpha \in \Omega$, then $|G| = |\alpha^{G}| |G_{\alpha}|$ for every $\alpha \in \Omega$.

Proof. Count the number of pairs $(g,\beta) \in G \times \Omega$ such that $\alpha^g = \beta$ in two different ways. On one hand, choosing g first gives the number as |G|, while on the other hand, choosing β first gives the number as $|\alpha^G| |G_{\alpha}|$, because if $\beta = \alpha^h$ for some h, then $\alpha^g = \beta$ iff $g \in G_{\alpha}h$, and $|G_{\alpha}h| = |G_{\alpha}|$.

An application: Lagrange's Theorem

If H is a subgroup of the finite group G, then |G| = |G:H| |H|- and in particular, both |H| and |G:H| are divisors of |G|.

Proof. Let *G* act on the right coset space $\{Hx : x \in G\}$ by right multiplication, with each element $g \in G$ inducing the permutation $\mu_g : Hx \mapsto Hxg$. Then the orbit of *H* is the entire coset space (G : H), while the stabiliser of *H* is $\{g \in G \mid Hg = H\} = \{g \in G \mid g \in H\} = H$, so the Orbit-Stabiliser Theorem gives |G| = |G : H| |H|.

Exercise: Find a finite group G that has no subgroup of order d for some divisor d of |G|.

Some more applications (for finite groups)

Conjugacy: Let the group G act on itself by conjugation, with each $g \in G$ inducing the permutation $\tau_g \colon x \mapsto g^{-1}xg$.

The orbit of x is the conjugacy class $[x] = \{g^{-1}xg : g \in G\}$, and its stabiliser is the centraliser $C_G(x) = \{g \in G \mid xg = gx\}$, so the Orbit-Stabiliser Theorem gives $|G| = |[x]| |C_G(x)|$, or equivalently, $|[x]| = |G|/|C_g(x)| = |G| \cdot C_G(x)|$, for all $x \in G$.

Class equation: If x_1, x_2, \ldots, x_k are representatives of the k distinct conjugacy classes of elements of the group G, then

$$|G| = \sum_{1 \le i \le k} |[x_i]| = \sum_{1 \le i \le k} |G: C_G(x_i)|.$$

Exercise: Use this to show that if G has order p^s for some prime p, then the centre Z(G) of G has at least p elements.

Burnside's Lemma: If the finite group G acts on the set Ω , with exactly m orbits, and $F_{\Omega}(g) = \{\alpha \in \Omega \mid \alpha^g = \alpha\}$ is the set of fixed points of each $g \in G$, then $m = \frac{1}{|G|} \sum_{g \in G} |F_{\Omega}(g)|$.

Proof. Simply count pairs $(g, \alpha) \in G \times \Omega$ such that $\alpha^g = \alpha$. On one hand, counting by g, this number is $\sum_{q \in G} |F_{\Omega}(g)|$.

On the other hand, for any $\alpha \in \Omega$, the number of g for which $\alpha^g = \alpha$ is $|G_{\alpha}| = |G|/|\Delta|$, where $\Delta = \alpha^G$ is the orbit of α . When this is counted over all $\alpha \in \Omega$, the term $|G|/|\Delta|$ is counted $|\Delta|$ times (once for each point in Δ), and so each orbit Δ contributes $|\Delta| (|G|/|\Delta|) = |G|$ to the total. Hence the total number is m|G|, giving $m|G| = \sum_{g \in G} |F_{\Omega}(g)|$.

An application of Burnside's Lemma:

In how many inequivalent ways can the faces of a regular tetrahedron be coloured using up to k given colours with one colour/face (but allowing more than one face/colour)?

Two colourings are considered to be equivalent if one can be obtained from the other by a rotation of the tetrahedron. The rotation group is A_4 , acting naturally on the 4 vertices (or 4 faces), so we need the number of orbits on colourings.

The identity fixes all k^4 colourings; a double-transposition (a,b)(c,d) fixes k^2 colourings (with a and b coloured the same and c and d coloured the same); and a 3-cycle (a,b,c) fixes k^2 colourings (with a,b and c coloured the same).

By Burnside's Lemma, the total number of inequivalent colourings is $\frac{1}{12}(k^4 + 3k^2 + 8k^2) = \frac{1}{12}k^2(k^2 + 11)$.

A combinatorial proof of some Sylow theory

If G is a finite group whose order |G| is divisible by the prime p, and p^s is the largest power of p that divides |G|, then any subgroup of G of order p^s is called a Sylow p-subgroup of G.

Two of the main statements of Sylow theory are that every such *G* has at least one Sylow *p*-subgroup and that if n_p is the number of Sylow *p*-subgroups of *G*, then $n_p \equiv 1 \mod p$.

Clearly the first property is a consequence of the second one, so we will prove the second one, using a combinatorial proof due to Helmut Wielandt.

Before doing that, we note that if G is cyclic of order n, generated by x, say, then G has exactly one subgroup of order p^s – namely the (cyclic) subgroup generated by x^{n/p^s} .

Helmut Wielandt (1910–2001)

Proof (that $n_p \equiv 1 \mod p$):

Define Ω as the set of $\begin{pmatrix} |G|\\ p^s \end{pmatrix}$ subsets of G of size p^s and then let G act on the set Ω by right multiplication, with each $g \in G$ taking S to $Sg = \{xg : x \in S\}$ for every $S \in \Omega$.

Note that if Δ is an orbit of G on Ω , then there exists at least one $S \in \Delta$ such that $1 \in S$ (because if $x \in T$ where $T \in \Delta$, then $1 = xx^{-1} \in Tx^{-1}$ with $Tx^{-1} \in \Delta$).

Now consider the stabiliser G_S of S in G. If $g \in G_S$ then $g = 1g \in Sg = S$ so $g \in S$, hence $G_S \subseteq S$, giving $|G_S| \leq |S|$.

We split the orbits of G on Ω into two types, according to whether or not $G_S = S$. [PTO]

Type (a) Suppose that $G_S = S$. Then S is a subgroup of G, and $\Delta = \{Sg : g \in G\}$ is the right coset space (G:S). In particular, Δ contains only one subgroup (namely S itself), and also $|\Delta| = |G:S| = |G|/|S| = (p^s q)/(p^s) = q$. Conversely, if S is a Sylow p-subgroup of G, then Δ has type (a).

Type (b) Suppose that $G_S \subset S$. Then $|G_S| < |S| = p^s$ but also $|G_S| = |G|/|\Delta|$ divides |G|, so $|\Delta|$ is divisible by p.

These imply that G has n_p orbits of length q on Ω , with the lengths of all other orbits being divisible by p.

Thus $\binom{|G|}{p^s} = |\Omega| \equiv n_p q \mod p$. But as this also holds for the cyclic group of the same order |G|, for which $n_p = 1$, we find $n_p q \equiv \binom{|G|}{p^s} \equiv q \mod p$ and so $n_p \equiv 1 \mod p$.

Further Sylow theory

Let G be a finite group with order $p^{s}q$ (where p is prime) as before. Then the following hold:

• If P is a Sylow p-subgroup of G, and Q is any subgroup of G with order p^r for some r, then $Q \subseteq x^{-1}Px$ for some $x \in G$.

• If P and Q are Sylow p-subgroups of G, then $Q = x^{-1}Px$ for some $x \in G$. Hence under conjugation, G has a single orbit on Sylow p-subgroups.

• The number of Sylow p-subgroups of G divides q.

My favourite application: If |G| = pqr where p, q and r are distinct primes, then G has a normal subgroup of order p, q or r. Hence in particular, no such group can be simple.

Proof. Assume the contrary. Let n_p , n_q and n_r be the numbers of Sylow p-, q- and r-subgroups (of orders p, q and r), respectively. If $n_p = 1$ then G has a unique Sylow p-subgroup P, and then $x^{-1}Px = P \ \forall x \in G$, so $P \lhd G$, contradiction. Thus $n_p > 1$ and similarly $n_q > 1$ and $n_r > 1$.

Next, without loss of generality, we may suppose p < q < r. By Sylow theory, n_r divides |G|/r = pq, so $n_r = p,q$ or pq. But also $n_r \equiv 1 \mod r$ and hence $n_r > r > q > p$, so $n_r = pq$. Then because any two Sylow *r*-subgroups intersect trivially (by Lagrange's theorem and since *r* is prime), it follows that *G* has pq(r-1) elements of order *r*. Similarly, $n_q = r$ or pr, while also $n_p = q, r$ or qr, and hence G has at least r(q-1) elements of order q, and at least q(p-1) elements of order p.

It follows that the number of elements of prime order in G is at least q(p-1) + r(q-1) + pq(r-1) = pqr - q + qr - r = pqr + (q-1)(r-1). But this is greater than pqr = |G|, contradiction! Hence proof.

Exercises

- If |G| = pq where p and q are distinct primes, then G cannot be simple.
- If $|G| = p^2 q$ where p and q are distinct primes, then G cannot be simple.

\S 2. Generating random elements of a group

Q: How do we select elements randomly from a group?

But first, why would we want to? One reason is that many group-theoretic algorithms rely on being able to do this. (Examples: algorithms for working out the order of a group generated by given elements, or identifying the group itself.)

For some groups, finding random elements is easy:

• Cyclic groups $C_n = \langle x \mid x^n = 1 \rangle$

Just take x^k where k is a random element of $\{0, 1, 2, \dots, k-1\}$

• Symmetric groups S_n

Just take a random permutation of $\{1, 2, 3, \ldots, n\}$

Exercises (or just possibilities to consider):

What about the following groups?

- Dihedral groups $D_n = \langle x, y \mid x^2 = y^n = 1, xyx = y^{-1} \rangle$ How do we find a random element of this group?
- Alternating groups A_n

How do we find a random **even** permutation of $\{1, 2, 3, \ldots, n\}$?

- A sharply 3-transitive group such as $PSL(2,2^s)$ in its action on the projective line over $GF(2^s)$? [Base & SGS]
- A group of order p^7 where p is prime? [PC-presentations]
- The Monster simple group? [Worth thinking about]

Clearly finding a good method may depend on the type of description we have for the group.

Digression: Generating sets

Let G be a group, and let X be a <u>subset</u> of G.

We say that X is a generating set for G if every element of G can be expressed as a 'word' $x_1^{e_1}x_2^{e_2}\dots x_k^{e_k}$ in elements of X and their inverses (with $x_i \in X$ and $e_i = \pm 1$ for $1 \le i \le k$).

Also if X is finite, then G is said to be finitely-generated, and the rank of G is defined as the smallest possible value of |X| (over all such X). Otherwise G has infinite rank.

More generally, if S is the set of all such words on X^{\pm} , then S is a subgroup of G, called the subgroup generated by X and denoted by $\langle X \rangle$.

Examples:

- Cyclic groups \equiv groups of rank 1
- Dihedral groups have rank 2 (generated by 2 reflections, or by a reflection and a rotation)
- The symmetric group S_n has rank 2 (e.g. generated by the transposition (1,2) and the n-cycle (1,2,...,n)), and is also generated by {(1,2), (2,3), ..., (n-1,n)}
- The alternating group A_n is the subgroup of S_n generated by the 3-cycles (a, b, c) ... and also has rank 2
- Every non-abelian simple group has rank 2 [Needs CFSG]

One further point (for later use):

Let G be a group of order n, with elements g_1, g_2, \ldots, g_n .

The multiplication table of a finite group G of order n is an $n \times n$ array with (i, j)th entry equal to the product $g_i g_j$. This is a Latin square. But much of its content is redundant!

If $X = \{x_1, x_2, \dots, x_m\}$ is a generating set for G, of size m, then we can reduce the multiplication table to an $m \times n$ array with (i, j)th entry equal to the product $x_i g_j$.

We can call this a reduced Cayley table for the pair (G, X).

Note that any element of the full multiplication table, say $g_i g_j$, can be obtained by expressing g_i as a word on X, say $x_{i_1}^{e_1} x_{i_2}^{e_2} \dots x_{i_k}^{e_k}$, and then working out $g_i g_j = x_{i_1}^{e_1} x_{i_2}^{e_2} \dots x_{i_k}^{e_k} g_j$ by successive calls to the reduced Cayley table.

Now, back to generating random elements of a group ...

How do we select elements randomly from a finite group G when G does not have a nice canonical form that makes this easy?

One effective method was developed by Celler, Leedham-Green, Murray, Niemeyer and O'Brien (in 1995), and is now called the Product Replacement Algorithm.

The algorithm starts by taking an ordered generating set $X = \{x_1, x_2, \ldots, x_m\}$ for G of size $m > \operatorname{rank}(G)$, and then performs the following basic operation a number of times:

Choose two random integers *i* and *j* from $\{1, 2..., m\}$, and replace x_i by either $x_i x_j$ or $x_j x_i$, to give a new *X*.

If this is done sufficiently many times, then any element of the resulting set X may be taken as a random element of G.

Example (for a group G of rank less than 4):

X_1	=	$\{ x_1, $	$x_2,$	$x_{3},$	<i>x</i> ₄ },
X_2	=	$\{ x_1, $	$x_{4}x_{2},$	<i>x</i> ₃ ,	x_4 },
X ₃	=	$\{ x_1 x_3, $	$x_{4}x_{2},$	<i>x</i> ₃ ,	x_4 },
X_{4}	=	$\{ x_1 x_3 x_4, $	$x_{4}x_{2},$	<i>x</i> ₃ ,	x_4 },
X_5	=	$\{ x_1 x_3 x_4, $	$x_{4}x_{2},$	$x_{3}x_{4}x_{2},$	x_4 },
X6	=	$\{ x_1 x_3 x_4, $	$x_4x_4x_2$,	$x_3x_4x_2$,	x_4 },
X_7	=	$\{ x_1 x_3 x_4, $	$x_4x_4x_2$,	$x_3x_4x_2,$	$x_1x_3x_4x_4$ },
	:				
	•				

Easy! And very quick!:

Features of the Product Replacement Algorithm:

- Easy to understand
- Very easy to implement
- Works for any finite group
- Very fast! Complexity O(Nc) where N = number of steps and c =cost of a single multiplication in G.
- Elements found are well-distributed according to various criteria and statistical tests.

Let k be the maximal cardinality of a minimal generating set X for G, and suppose $m \ge 2k$. Also let \mathcal{X} be the set of ordered m-tuples of elements of G that generate G, and let X_t be the element of \mathcal{X} obtained by repeating the basic operation t times. Then for every $Y \in \mathcal{X}$, the probability that $X_t = Y$ tends to $1/|\mathcal{X}|$ as $t \to \infty$.

A 3rd conference on Symmetries of Discrete Objects will be held the week 10-14 February 2020 in Rotorua, New Zealand

See www.math.auckland.ac.nz/~conder/SODO-2020 All welcome!