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Outline of topics

1. Basic applications of counting

2. Methods for generating random elements of a group

3. Cayley graphs

4. Schreier coset graphs and their applications

5. Back-track search to find small index subgroups

6. Double-coset graphs and some applications

7. Möbius inversion on lattices and applications

Copies of slides can be made available by email or USB stick.



§0. Background on group theory

In this course, a relatively small amount of knowledge of

group theory will be needed, namely the following:

• Definition and elementary properties of groups

• Some well known examples of groups – e.g. Cn (cyclic),

Dn (dihedral), An (alternating), Sn (symmetric)

• Subgroups, cosets, conjugacy, normal subgroups, factor

groups, homomorphisms, isomorphisms, automorphisms

• Permutation groups (i.e. subgroups of symmetric groups)

• Generating sets for groups

• Presentation of groups by generators and relations.

Information about most of these things is available on Wikipedia.



§1. Basic applications of counting

Many theorems in combinatorics can be proved by counting
the same thing in two different ways – e.g. the ‘hand-shaking
lemma’ in graph theory (2|E(X)| =

∑
v∈V (X) deg(v)).

The same thing happens in aspects of group theory.

Theorem (The ‘Orbit-Stabiliser Theorem’)
If G is a permutation group on a set Ω, and Gα and αG are
the stabiliser {g ∈ G | αg = α} and orbit {αg : g ∈ G} of a
point α ∈ Ω, then |G| = |αG| |Gα| for every α ∈ Ω.

Proof. Count the number of pairs (g, β) ∈ G ×Ω such that
αg = β in two different ways. On one hand, choosing g first
gives the number as |G|, while on the other hand, choosing
β first gives the number as |αG| |Gα|, because if β = αh for
some h, then αg = β iff g ∈ Gαh, and |Gαh| = |Gα|. �



An application: Lagrange’s Theorem

If H is a subgroup of the finite group G, then |G| = |G :H| |H|
– and in particular, both |H| and |G :H| are divisors of |G|.

Proof. Let G act on the right coset space {Hx : x ∈ G}
by right multiplication, with each element g ∈ G inducing

the permutation µg : Hx 7→ Hxg. Then the orbit of H is

the entire coset space (G : H), while the stabiliser of H is

{g ∈ G | Hg = H} = {g ∈ G | g ∈ H} = H, so the Orbit-

Stabiliser Theorem gives |G| = |G :H| |H|.

Exercise: Find a finite group G that has no subgroup of

order d for some divisor d of |G|.



Some more applications (for finite groups)

Conjugacy: Let the group G act on itself by conjugation,
with each g ∈ G inducing the permutation τg : x 7→ g−1xg.

The orbit of x is the conjugacy class [x] = {g−1xg : g ∈ G},
and its stabiliser is the centraliser CG(x) = {g ∈ G | xg = gx},
so the Orbit-Stabiliser Theorem gives |G| = |[x]| |CG(x)|, or
equivalently, |[x]| = |G|/|Cg(x)| = |G : CG(x)|, for all x ∈ G.

Class equation: If x1, x2, . . . , xk are representatives of the k
distinct conjugacy classes of elements of the group G, then

|G| =
∑

1≤i≤k
|[xi]| =

∑
1≤i≤k

|G :CG(xi)|.

Exercise: Use this to show that if G has order ps for some
prime p, then the centre Z(G) of G has at least p elements.



Burnside’s Lemma: If the finite group G acts on the set Ω,

with exactly m orbits, and FΩ(g) = {α ∈ Ω | αg = α} is the

set of fixed points of each g ∈ G, then m =
1

|G|
∑
g∈G
|FΩ(g)|.

Proof. Simply count pairs (g, α) ∈ G×Ω such that αg = α.

On one hand, counting by g, this number is
∑
g∈G
|FΩ(g)|.

On the other hand, for any α ∈ Ω, the number of g for which

αg = α is |Gα| = |G|/|∆|, where ∆ = αG is the orbit of α.

When this is counted over all α ∈ Ω, the term |G|/|∆| is

counted |∆| times (once for each point in ∆), and so each

orbit ∆ contributes |∆| (|G|/|∆|) = |G| to the total. Hence

the total number is m|G|, giving m|G| =
∑
g∈G
|FΩ(g)|. �



An application of Burnside’s Lemma:

In how many inequivalent ways can the faces of a regular
tetrahedron be coloured using up to k given colours with
one colour/face (but allowing more than one face/colour)?

Two colourings are considered to be equivalent if one can
be obtained from the other by a rotation of the tetrahedron.
The rotation group is A4, acting naturally on the 4 vertices
(or 4 faces), so we need the number of orbits on colourings.

The identity fixes all k4 colourings; a double-transposition
(a,b)(c,d) fixes k2 colourings (with a and b coloured the same
and c and d coloured the same); and a 3-cycle (a,b,c) fixes k2

colourings (with a,b and c coloured the same).

By Burnside’s Lemma, the total number of inequivalent
colourings is 1

12(k4 + 3k2 + 8k2) = 1
12k

2(k2 + 11).



A combinatorial proof of some Sylow theory

If G is a finite group whose order |G| is divisible by the prime
p, and ps is the largest power of p that divides |G|, then any
subgroup of G of order ps is called a Sylow p-subgroup of G.

Two of the main statements of Sylow theory are that every
such G has at least one Sylow p-subgroup and that if np is
the number of Sylow p-subgroups of G, then np ≡ 1 mod p.

Clearly the first property is a consequence of the second
one, so we will prove the second one, using a combinatorial
proof due to Helmut Wielandt.

Before doing that, we note that if G is cyclic of order n,
generated by x, say, then G has exactly one subgroup of
order ps – namely the (cyclic) subgroup generated by xn/p

s
.



Helmut Wielandt (1910–2001)



Proof (that np ≡ 1 mod p):

Define Ω as the set of

(
|G|
ps

)
subsets of G of size ps and

then let G act on the set Ω by right multiplication, with

each g ∈ G taking S to Sg = {xg : x ∈ S} for every S ∈ Ω.

Note that if ∆ is an orbit of G on Ω, then there exists at

least one S ∈ ∆ such that 1 ∈ S (because if x ∈ T where

T ∈∆, then 1 = xx−1 ∈ Tx−1 with Tx−1 ∈∆).

Now consider the stabiliser GS of S in G. If g ∈ GS then

g = 1g ∈ Sg = S so g ∈ S, hence GS ⊆ S, giving |GS| ≤ |S|.

We split the orbits of G on Ω into two types, according to

whether or not GS = S. [PTO]



Type (a) Suppose that GS = S. Then S is a subgroup of
G, and ∆ = {Sg : g ∈ G} is the right coset space (G :S). In
particular, ∆ contains only one subgroup (namely S itself),
and also |∆| = |G :S| = |G|/|S| = (psq)/(ps) = q. Conversely,
if S is a Sylow p-subgroup of G, then ∆ has type (a).

Type (b) Suppose that GS ⊂ S. Then |GS| < |S| = ps but
also |GS| = |G|/|∆| divides |G|, so |∆| is divisible by p.

These imply that G has np orbits of length q on Ω, with the
lengths of all other orbits being divisible by p.

Thus

(
|G|
ps

)
= |Ω| ≡ np q mod p. But as this also holds for

the cyclic group of the same order |G|, for which np = 1, we

find np q ≡
(
|G|
ps

)
≡ q mod p and so np ≡ 1 mod p. �



Further Sylow theory

Let G be a finite group with order psq (where p is prime) as

before. Then the following hold:

• If P is a Sylow p-subgroup of G, and Q is any subgroup of

G with order pr for some r, then Q ⊆ x−1Px for some x ∈ G.

• If P and Q are Sylow p-subgroups of G, then Q = x−1Px

for some x ∈ G. Hence under conjugation, G has a single

orbit on Sylow p-subgroups.

• The number of Sylow p-subgroups of G divides q.



My favourite application: If |G| = pqr where p, q and r are

distinct primes, then G has a normal subgroup of order p, q

or r. Hence in particular, no such group can be simple.

Proof. Assume the contrary. Let np, nq and nr be the num-

bers of Sylow p-, q- and r-subgroups (of orders p, q and r),

respectively. If np = 1 then G has a unique Sylow p-subgroup

P , and then x−1Px = P ∀x ∈ G, so P C G, contradiction.

Thus np > 1 and similarly nq > 1 and nr > 1.

Next, without loss of generality, we may suppose p < q < r.

By Sylow theory, nr divides |G|/r = pq, so nr = p, q or pq.

But also nr ≡ 1 mod r and hence nr > r > q > p, so nr = pq.

Then because any two Sylow r-subgroups intersect trivially

(by Lagrange’s theorem and since r is prime), it follows that

G has pq(r − 1) elements of order r.



Similarly, nq = r or pr, while also np = q, r or qr, and hence

G has at least r(q − 1) elements of order q, and at least

q(p− 1) elements of order p.

It follows that the number of elements of prime order in G

is at least q(p− 1) + r(q− 1) + pq(r− 1) = pqr− q+ qr− r =

pqr + (q − 1)(r − 1). But this is greater than pqr = |G|,
contradiction! Hence proof. �

Exercises

• If |G| = pq where p and q are distinct primes, then G

cannot be simple.

• If |G| = p2q where p and q are distinct primes, then G

cannot be simple.



§2. Generating random elements of a group

Q: How do we select elements randomly from a group?

But first, why would we want to? One reason is that many

group-theoretic algorithms rely on being able to do this.

(Examples: algorithms for working out the order of a group

generated by given elements, or identifying the group itself.)

For some groups, finding random elements is easy:

• Cyclic groups Cn = 〈x | xn = 1 〉
Just take xk where k is a random element of {0,1,2, . . . , k−1}

• Symmetric groups Sn

Just take a random permutation of {1,2,3, . . . , n}



Exercises (or just possibilities to consider):

What about the following groups?

• Dihedral groups Dn = 〈x, y | x2 = yn = 1, xyx = y−1 〉
How do we find a random element of this group?

• Alternating groups An
How do we find a random even permutation of {1,2,3, . . . , n}?

• A sharply 3-transitive group – such as PSL(2,2s) in its
action on the projective line over GF(2s)? [Base & SGS]

• A group of order p7 where p is prime? [PC-presentations]

• The Monster simple group? [Worth thinking about]

Clearly finding a good method may depend on the type of
description we have for the group.



Digression: Generating sets

Let G be a group, and let X be a subset of G.

We say that X is a generating set for G if every element of

G can be expressed as a ‘word’ x
e1
1 x

e2
2 . . . x

ek
k in elements of

X and their inverses (with xi ∈ X and ei = ±1 for 1 ≤ i ≤ k).

Also if X is finite, then G is said to be finitely-generated,

and the rank of G is defined as the smallest possible value

of |X| (over all such X). Otherwise G has infinite rank.

More generally, if S is the set of all such words on X±, then

S is a subgroup of G, called the subgroup generated by X

and denoted by 〈X〉.



Examples:

• Cyclic groups ≡ groups of rank 1

• Dihedral groups have rank 2 (generated by 2 reflections,

or by a reflection and a rotation)

• The symmetric group Sn has rank 2 (e.g. generated by

the transposition (1,2) and the n-cycle (1,2, . . . , n)),

and is also generated by {(1,2), (2,3), . . . , (n−1, n)}

• The alternating group An is the subgroup of Sn generated

by the 3-cycles (a, b, c) ... and also has rank 2

• Every non-abelian simple group has rank 2 [Needs CFSG]



One further point (for later use):

Let G be a group of order n, with elements g1, g2, . . . , gn.

The multiplication table of a finite group G of order n is an
n×n array with (i, j)th entry equal to the product gi gj. This
is a Latin square. But much of its content is redundant!

If X = {x1, x2, . . . , xm} is a generating set for G, of size m,
then we can reduce the multiplication table to an m×n array
with (i, j)th entry equal to the product xi gj.

We can call this a reduced Cayley table for the pair (G,X).

Note that any element of the full multiplication table, say
gi gj, can be obtained by expressing gi as a word on X, say
x
e1
i1
x
e2
i2
. . . x

ek
ik

, and then working out gi gj = x
e1
i1
x
e2
i2
. . . x

ek
ik
gj by

successive calls to the reduced Cayley table.

Now, back to generating random elements of a group ...



How do we select elements randomly from a finite

group G when G does not have a nice canonical form

that makes this easy?

One effective method was developed by Celler, Leedham-

Green, Murray, Niemeyer and O’Brien (in 1995), and is now

called the Product Replacement Algorithm.

The algorithm starts by taking an ordered generating set

X = {x1, x2, . . . , xm} for G of size m > rank(G), and then

performs the following basic operation a number of times:

Choose two random integers i and j from {1,2 . . . ,m},
and replace xi by either xixj or xjxi, to give a new X.

If this is done sufficiently many times, then any element of

the resulting set X may be taken as a random element of G.



Example (for a group G of rank less than 4):

X1 = { x1, x2, x3, x4 },
X2 = { x1, x4x2, x3, x4 },
X3 = { x1x3, x4x2, x3, x4 },
X4 = { x1x3x4, x4x2, x3, x4 },
X5 = { x1x3x4, x4x2, x3x4x2, x4 },
X6 = { x1x3x4, x4x4x2, x3x4x2, x4 },
X7 = { x1x3x4, x4x4x2, x3x4x2, x1x3x4x4 },

.
:

Easy! And very quick!:



Features of the Product Replacement Algorithm:

• Easy to understand

• Very easy to implement

• Works for any finite group

• Very fast! Complexity O(Nc) where N = number of steps
and c = cost of a single multiplication in G.

• Elements found are well-distributed according to various
criteria and statistical tests.

Let k be the maximal cardinality of a minimal generating
set X for G, and suppose m ≥ 2k. Also let X be the set
of ordered m-tuples of elements of G that generate G, and
let Xt be the element of X obtained by repeating the basic
operation t times. Then for every Y ∈ X , the probability
that Xt = Y tends to 1/|X | as t→∞.



A 3rd conference on Symmetries of Discrete Objects will be
held the week 10-14 February 2020 in Rotorua, New Zealand

See www.math.auckland.ac.nz/∼conder/SODO-2020
All welcome!




