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Ramsey’s theorem (for 2 colors)

Theorem (Ramsey)
There exists a least positive integer R(r , s) for which every blue-red
edge coloring of the complete graph on R(r , s) vertices contains a blue
clique on r vertices or a red clique on s vertices.

R(3,3): least integer N for which each blue-red edge coloring on
KN contains either a red or a blue triangle.

R(3,3) ≤ 6: friends and strangers.

R(3,3) > 5: Pentagon with red edges, then color "inside" edges
blue.
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The probabilistic method (Erdős)

Color each edge of KN independently with P(R) = P(B) = 1
2 .

For |S| = r vertices define X (S) = 1 if monochromatic, else 0.

Number of monochromatic subgraphs is X =
∑
|S|=r X (S).

Linearity of expectation: E(X ) =
(n

r

)
21−(r

2).

If E(X ) < 1 then a non-monochromatic example exists, so
R(r , r) ≥ 2r/2.

Can one explicitly (pol. time algorithm in nr. of vertices) construct
for some fixed ε > 0 a 2-edge coloring of the complete graph on
N > (1 + ε)n vertices with no monochromatic clique of size n?
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Sum free sets

A subset S of an Abelian group is called sum-free if there are no
elements a,b and c in S such that a + b = c.

In Z3k+2, the set {k + 1, k + 2, · · · ,2k + 1} is sum free.

Theorem (Erdős)
Every finite set B of positive integers has a sum-free subset of size
more than 1

3 |B|.

Remark: The largest c for which every set B of positive integers has a
sum-free subset of size at least c|B| satisfies 1

3 < c < 12
29 .
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Proof of the sum free set theorem

Pick an integer p = 3k + 2 such that p > 2max(B).

I = {k + 1, · · · ,2k + 1} is sum-free in Zp, and |I| > |B|
3 .

Choose x 6= 0 uniformly at random in Zp.

The map σx : b 7→ xb is an injection from B into Zp.

Denote Ax = {b ∈ B : σx(b) ∈ I}. (note Ax is sumfree)

P(σx(b) ∈ I) = |I|
p−1 = k+1

3k+1 >
1
3 .

E(|Ax |) =
∑

b∈B P(σx(b) ∈ I) > |B|
3 .

Hence there exists an A? ⊂ B of size larger than |B|3 which is sum
free since Ax = xA? is.
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Main Result

A d-regular graph is called δ-sparse if the number of paths of
length two joining any pair of vertices is at most d1−δ.

independent set I: no two vertices in I form an edge of the graph.

Main Result

Let δ, ε ∈ R+ and let G be a v-vertex d-regular δ-sparse graph. If d is
large enough relative to δ and ε, then G contains a maximal
independent set of size at most

(1 + ε)v log d
d

.
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The classical generalized quadrangles

non-singular quadric of Witt index 2 in PG(3,q) (O+(4,q)),
PG(4,q) (O(5,q)) and PG(5,q) (O−(6,q)).

non-singular Hermitian variety in PG(3,q2) (U(4,q2))

or PG(4,q2) (U(5,q2)).

Symplectic quadrangle W (q), of order q (Sp(4,q)).

Not all GQs are classical (e.g. Tits, Kantor, Payne).
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Small maximal partial ovoids in GQs

Q Previous range for γ(Q) Theorem Ref.
Q−(5, q) [2q, q2/2] [2q, 3q log q] [DBKMS,EH,MS]

Q(4, q), q odd [1.419q, q2] [1.419q, 2q log q] [CDWFS,DBKMS]
H(4, q2) [q2, q5] [q2, 5q2 log q] [MS]

DH(4, q2) [q3, q5] [q3, 5q3 log q] /
H(3, q2), q odd [q2, 2q2 log q] [q2, 3q2 log q] [AEL,M]

γ(Q): Minimal size of maximal partial ovoid.

ovoid : set of points, no two of which are collinear.

Main theorem: any GQ of order (s, t) has a maximal partial ovoid
of size roughly s log(st).
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Small maximal partial ovoids in polar spaces

Q Known prior Range from MT Ref.
Q(2n,q),q odd [q,qn] [q, (2n − 2)q log q] [BKMS]
Q(2n,q),q even = q + 1 [BKMS]
Q+(2n + 1,q) [2q,qn],n ≥ 3 [2q, (2n − 1)q log q] [BKMS]
Q−(2n + 1,q) [2q, 1

2qn+1],n ≥ 3 [2q, (2n − 1)q log q] [BKMS]
W (2n + 1,q) = q + 1 [BKMS]

H(2n,q2) [q2,q2n+1],n ≥ 3 [q2, (4n − 3)q2 log q] [JDBKL]
H(2n + 1,q2) [q2,q2n+1],n ≥ 2 [q2, (4n − 1)q2 log q] [JDBKL]
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Other examples

Small maximal partial spreads in polar spaces.

Maximal partial spreads in projective space PG(n,q),n ≥ 3.

For the latter: vertices=lines, edges=intersecting lines.

δ-sparse system with v = q2n−2, d = qn, so maximal partial
spread of size (n − 2)qn−2 log q.
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Problem: How to prove lower bounds?
Theorem (Weil)
Let ξ be a character of Fq of order s. Let f (x) be a polynomial of
degree d over Fq such that f (x) 6= c(h(x))s, where c ∈ Fq. Then

|
∑
a∈Fq

ξ(f (a))| ≤ (d − 1)
√

q.

Gács and Szőnyi: In a Miquelian 3− (q2 + 1,q + 1,1) design, q
odd the minimal number of circles through a given point needed to
block all circles is always at least or order 1

2 log q using Weil’s
theorem.

This case involves estimates of quadratic character sums,
becomes very/too complicated for other examples.

Moreover many problems do not have an algebraic description.
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A technical condition for GQs

A GQ of order (s, t) is called locally sparse if for any set of three points,
the number of points collinear with all three points is at most s + 1.

Any GQ of order (s, s2) is locally sparse
(Bose-Shrikhande, Cameron)

In particular, Q−(5,q) is locally sparse.

H(4,q2) is not locally sparse.
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A weaker theorem for GQs

Theorem

For any α > 4, there exists so(α) such that if s ≥ so(α) and
t ≥ s(log s)2α, then any locally sparse generalized quadrangle of order
(s, t) has a maximal partial ovoid of size at most s(log s)α.
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First round

Fix a point x ∈ P and for each line l through x independently flip a
coin with heads probability ps = s log t−αs log log s

t , where α > 4.

On each line l where the coin turned up heads, select uniformly a
point of l \ {x} and denote the set of selected points by S.

U = P \ (S ∪ {x})./ (uncovered points not collinear with x).
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Second round

Let x? ∈ x⊥ \ S./. On each line l ∈ L through x? with l ∩ U 6= ∅,
uniformly and randomly select a point of l ∩ U. Moreover select a point
x+ on the line M through x? and x different from x , and call this set of
selected points T . Then clearly S ∪ T ∪ {x+} is a partial ovoid. So we
will need to show that S ∪ T ∪ {x+} is maximal, and small.
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A form of the Chernoff bound

A sum of independent random variables is concentrated according to
the so-called Chernoff Bound. We shall use the Chernoff Bound in the
following form. We write X ∼ Bin(n,p) to denote a binomial random
variable with probability p over n trials.

Proposition

Let X ∼ Bin(n,p). Then for δ ∈ [0,1],

P(|X − pn| ≥ δpn) ≤ 2e−δ
2pn/2.
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Proof for GQs i

First we show |S| . s log t using the Chernoff Bound. There are t + 1
lines through x , and we independently selected each line with
probability ps and then one point on each selected line. So
|S| ∼ Bin(t + 1,ps) and E(|S|) = ps(t + 1) ∼ s log t . By Chernoff, for
any δ > 0,

P(|S| ≥ (1 + δ)s log t) ≤ 2 exp(−1
2δ

2s log t)→ 0.

Therefore a.a.s. |S| . s log t .
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Three key properties

We can show that in selecting S, Properties I – III described below
occur simultaneously a.a.s. as s →∞:

I. For all lines ` ∈ L disjoint from x, |` ∩ U| < dlog se.
II. For all u ∈ x⊥\S, |u⊥ ∩ U| . s(log s)α

III. For v ,w 6∈ S ∪ {x}; v 6∼ w, |{v ,w}⊥ ∩ U| & (log s)α.
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Proof for GQs ii

Assuming that a.a.s., S satisfies Properties I – III, we fix an instance of
such a partial ovoid S with |S| . s log t and let T be as before. By
Property II, |T | ≤ Xx? . s(log s)α. Therefore

|S ∪ T | ≤ |S|+ Xx? + 1 . s log t + s(log s)α . s(log s)α
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Proof for GQs iii

For v ∈ (x⊥\S./) ∪ U not collinear with x?, a.a.s., Xvx? ≥ 1
2(log s)α by

Property III. By Property I, the probability that v is not collinear with
any point in T is at most

( log s − 1
log s

)Xvx?

≤
(

1− 1
log s

)1
2 (log s)α

≤ e−
1
2 (log s)3

<
1
s5

since α > 4. Hence the expected number of points in (x⊥\S./) ∪ U not
collinear with any point in T is at most

s−5|P| . 1
s
.

It follows that a.a.s. T covers all points not yet covered by S except
those on the line xx?. So S ∪ T ∪ {x+} is a maximal partial ovoid.
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Definition of Random variables I

For u ∈ x⊥◦ , let U(u) denote the set of points in P\x⊥ which are not
covered by S\{u}, and define the random variable:

Xu = |u⊥ ∩ U(u)|.

In the case u ∈ x⊥\S, note that U(u) = U, so then Xu = |u⊥ ∩ U|.
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Definition of Random variables II

For v ,w ∈ P\{x} non-collinear, let U(v ,w) denote the set of points in
P\x⊥ which are not covered by S\{v ,w}, and define the random
variable:

Xvw = |{v ,w}⊥◦ ∩ U(v ,w)|.

In the case v ,w 6∈ S ∪ {x}, U(v ,w) = U and so Xvw = |{v ,w}⊥◦ ∩ U|.
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Expected values

Lemma

Let u ∈ x⊥◦ , and let v ,w ∈ P\{x} be a pair of non-collinear points.
Then

E(Xu) ∼ s(log s)α and E(Xvw ) ∼ (log s)α.

In addition, if j ∈ N and jtp2 → 0 as s →∞, then E(Xu)
j ∼ sj(log s)αj .
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Proof of property I-i

Fix a line ` ∈ L disjoint from x , and let Y` be the number of sequences
of a = dlog se distinct points in U ∩ (`\x⊥). Let R ⊂ `\x⊥ be a set of a
distinct points. Then ∣∣∣⋃

y∈R

{x , y}⊥◦
∣∣∣ = at + 1

and hence

E(Y`) = s(s − 1)(s − 2) . . . (s − a + 1) · (1− p)at+1.

Since atp2 → 0 and a2/s → 0, we obtain

E(Y`) ∼
sa(log s)aα

ta .
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Proof of property I-ii

Let As =
⋃
`∈L
x 6∈`

[Y` ≥ 1]. Since |L| = (t + 1)(st + 1) ∼ st2 is the total

number of lines,

P(As) ≤
∑
`∈L
x 6∈`

P(Y` ≥ 1) . st2 · E(Y`) ∼
sa+1(log s)aα

ta−2 .

Since t ≥ s(log s)2α and a = dlog se, P(As)→ 0 as s →∞, as required
for Property I.
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Practical implementation

The randomized algorithm could be implemented, and we believe it is
effective in finding maximal partial ovoids even in (s, t)-quadrangles
where s is not too large. In addition, it can be deduced from the proof
that the probability that the algorithm does not return a maximal partial
ovoid of size at most s(log s)α, α > 4, is at most s− log s if s is large
enough.
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Set systems

X = X (S) is a set of atoms.

Set system S: family of subsets of X referred to as blocks.

S is an (n,d , r)-system if |X | = n, every atom is contained in d
blocks, every block contains r atoms.

A maximal independent set in a set system S is a set I of atoms
containing no block but such that the addition of any atom to I
results in a set containing some block of S.

General problem: find the smallest possible size γ0(S) of a
maximal independent set in S.
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Segre’s Problem I.

What is the smallest possible size for a complete arc in a
projective plane?

S: family of triples of collinear points in the plane; the atoms are
the points of the projective plane.

Kim-Vu: There are positive constants c and M such that the
following holds. In every projective plane of order q ≥ M, there is
a complete arc of size at most q1/2 logc q(c = 300).

If the plane has order q, then S is an (n,d , r)-system with
n = q2 + q + 1, r = 3 and d = (q + 1)

(q
2

)
.
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Sparseness conditions

Let δ > 0, n ≥ r ≥ 2 and d ≥ 1. An (n,d , r)-system S is δ-sparse if

δ-1 for x , y ∈ X (S), the number of pairs of blocks e, f ∈ S such
that x ∈ e, y ∈ f , (e\{x}) = (f\{y}) is at most d1−δ.

δ-2 for a ∈ [2, r − 1] and any A ⊆ X (S) with |A| = a, the number of
blocks in S containing A is at most d (r−a)/(r−1)−δ.
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Main result Note: Work in progress

Theorem

For all δ > 0 and r ≥ 2, there exist a constants c1(r , δ), c2(r , δ) > 0
such that for any δ-sparse (n,d , r)-system S, there exists a maximal
independent set I ⊆ X (S) such that

c1(r , δ)n
( log d

d

)1/(r−1)
≤ |I| ≤ c2(r , δ)n

log d
d1/(r−1) .

Bohman-Bennett; randomized greedy algorithm.

Our approach is iterative greedy using the Lovàsz local lemma

In fact, we prove a result on (ε, δ)-sparse systems.
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Segre’s problem II.

γ◦(S) is roughly at most
√

3q log q if q is large enough.

Best lower bound is roughly 2
√

q, by Lunelli and Sce.

Computational evidence by Fisher that the average size of a
complete arc in PG(2,q) is close to

√
3q log q.

Main open problem: find lower bounds; in particular does every
complete arc have size at least

√
qω(q) for some unbounded

function ω(q).
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