Small maximal independent sets

Jeroen Schillewaert
(joint with Michael Tait and Jacques Verstraëte)

Department of Mathematics
University of Auckland
New Zealand

Table of Contents

(1) Statement of the main result

2 Applications in finite geometry

(3) An easier algorithm for a class of GQs

(4) General (n, d, r) systems

Ramsey's theorem (for 2 colors)

Theorem (Ramsey)

There exists a least positive integer $R(r, s)$ for which every blue-red edge coloring of the complete graph on $R(r, s)$ vertices contains a blue clique on r vertices or a red clique on s vertices.

- $R(3,3)$: least integer N for which each blue-red edge coloring on K_{N} contains either a red or a blue triangle.
- $R(3,3) \leq 6$: friends and strangers.
- $R(3,3)>5$: Pentagon with red edges, then color "inside" edges blue.

The probabilistic method (Erdős)

- Color each edge of K_{N} independently with $\mathbb{P}(R)=\mathbb{P}(B)=\frac{1}{2}$.
- For $|S|=r$ vertices define $X(S)=1$ if monochromatic, else 0 .
- Number of monochromatic subgraphs is $X=\sum_{|S|=r} X(S)$.
- Linearity of expectation: $\mathbb{E}(X)=\binom{n}{r} 2^{1-\binom{r}{2} \text {. }}$
- If $\mathbb{E}(X)<1$ then a non-monochromatic example exists, so $R(r, r) \geq 2^{r / 2}$.
- Can one explicitly (pol. time algorithm in nr. of vertices) construct for some fixed $\epsilon>0$ a 2-edge coloring of the complete graph on $N>(1+\epsilon)^{n}$ vertices with no monochromatic clique of size n ?

Sum free sets

- A subset S of an Abelian group is called sum-free if there are no elements a, b and c in S such that $a+b=c$.
- In $\mathbb{Z}_{3 k+2}$, the set $\{k+1, k+2, \cdots, 2 k+1\}$ is sum free.

Theorem (Erdős)

Every finite set B of positive integers has a sum-free subset of size more than $\frac{1}{3}|B|$.

Remark: The largest c for which every set B of positive integers has a sum-free subset of size at least $c|B|$ satisfies $\frac{1}{3}<c<\frac{12}{29}$.

Proof of the sum free set theorem

- Pick an integer $p=3 k+2$ such that $p>2 \max (B)$.
- $I=\{k+1, \cdots, 2 k+1\}$ is sum-free in \mathbb{Z}_{p}, and $|I|>\frac{|B|}{3}$.
- Choose $x \neq 0$ uniformly at random in \mathbb{Z}_{p}.
- The map $\sigma_{x}: b \mapsto x b$ is an injection from B into \mathbb{Z}_{p}.
- Denote $A_{x}=\left\{b \in B: \sigma_{x}(b) \in I\right\}$. (note A_{x} is sumfree)
- $\mathbb{P}\left(\sigma_{x}(b) \in I\right)=\frac{|I|}{p-1}=\frac{k+1}{3 k+1}>\frac{1}{3}$.
- $\mathbb{E}\left(\left|A_{x}\right|\right)=\sum_{b \in B} \mathbb{P}\left(\sigma_{x}(b) \in I\right)>\frac{|B|}{3}$.
- Hence there exists an $A^{\star} \subset B$ of size larger than $\frac{|B|}{3}$ which is sum free since $A_{x}=x A^{\star}$ is.

Main Result

- A d-regular graph is called δ-sparse if the number of paths of length two joining any pair of vertices is at most $d^{1-\delta}$.
- independent set I: no two vertices in I form an edge of the graph.

Main Result

Let $\delta, \varepsilon \in \mathbb{R}^{+}$and let G be a v-vertex d-regular δ-sparse graph. If d is large enough relative to δ and ε, then G contains a maximal independent set of size at most

$$
\frac{(1+\varepsilon) v \log d}{d} .
$$

Table of Contents

(1) Statement of the main result

(2) Applications in finite geometry

3 An easier algorithm for a class of GQs

4 General (n, d, r) systems

The classical generalized quadrangles

- non-singular quadric of Witt index 2 in $\operatorname{PG}(3, q)\left(O^{+}(4, q)\right)$, $\operatorname{PG}(4, q)(O(5, q))$ and $\operatorname{PG}(5, q)\left(O^{-}(6, q)\right)$.
- non-singular Hermitian variety in $\operatorname{PG}\left(3, q^{2}\right)\left(U\left(4, q^{2}\right)\right)$ or $\operatorname{PG}\left(4, q^{2}\right)\left(U\left(5, q^{2}\right)\right)$.
- Symplectic quadrangle $W(q)$, of order $q(\operatorname{Sp}(4, q))$.
- Not all GQs are classical (e.g. Tits, Kantor, Payne).

Small maximal partial ovoids in GQs

\mathcal{Q}	Previous range for $\gamma(\mathcal{Q})$	Theorem	Ref.
$Q^{-}(5, q)$	$\left[2 q, q^{2} / 2\right]$	$[2 q, 3 q \log q]$	$[$ DBKMS,EH,MS]
$Q(4, q), q$ odd	$\left[1.419 q, q^{2}\right]$	$[1.419 q, 2 q \log q]$	$[$ CDWFS,DBKMS]
$H\left(4, q^{2}\right)$	$\left[q^{2}, q^{5}\right]$	$\left[q^{2}, 5 q^{2} \log q\right]$	$[M S]$
$D H\left(4, q^{2}\right)$	$\left[q^{3}, q^{5}\right]$	$\left[q^{3}, 5 q^{3} \log q\right]$	$/$
$H\left(3, q^{2}\right), q$ odd	$\left[q^{2}, 2 q^{2} \log q\right]$	$\left[q^{2}, 3 q^{2} \log q\right]$	$[$ AEL,M]

- $\gamma(\mathcal{Q})$: Minimal size of maximal partial ovoid.
- ovoid: set of points, no two of which are collinear.
- Main theorem: any GQ of order (s, t) has a maximal partial ovoid of size roughly $s \log (s t)$.

Small maximal partial ovoids in polar spaces

\mathbf{Q}	Known prior	Range from MT	Ref.
$Q(2 n, q), q$ odd	$\left[q, q^{n}\right]$	$[q,(2 n-2) q \log q]$	$[\mathrm{BKMS}]$
$Q(2 n, q), q$ even	$=q+1$		$[\mathrm{BKMS}]$
$Q^{+}(2 n+1, q)$	$\left[2 q, q^{n}\right], n \geq 3$	$[2 q,(2 n-1) q \log q]$	$[\mathrm{BKMS}]$
$Q^{-}(2 n+1, q)$	$\left[2 q, \frac{1}{2} q^{n+1}\right], n \geq 3$	$[2 q,(2 n-1) q \log q]$	$[\mathrm{BKMS}]$
$W(2 n+1, q)$	$=q+1$		$[\mathrm{BKMS}]$
$H\left(2 n, q^{2}\right)$	$\left[q^{2}, q^{2 n+1}\right], n \geq 3$	$\left[q^{2},(4 n-3) q^{2} \log q\right]$	$[\mathrm{JDBKL}]$
$H\left(2 n+1, q^{2}\right)$	$\left[q^{2}, q^{2 n+1}\right], n \geq 2$	$\left[q^{2},(4 n-1) q^{2} \log q\right]$	$[\mathrm{JDBKL}]$

Other examples

- Small maximal partial spreads in polar spaces.
- Maximal partial spreads in projective space $\operatorname{PG}(n, q), n \geq 3$.
- For the latter: vertices=lines, edges=intersecting lines.
- δ-sparse system with $v=q^{2 n-2}, d=q^{n}$, so maximal partial spread of size $(n-2) q^{n-2} \log q$.

Problem: How to prove lower bounds?

Theorem (Weil)

Let ξ be a character of \mathbb{F}_{q} of order s. Let $f(x)$ be a polynomial of degree d over \mathbb{F}_{q} such that $f(x) \neq c(h(x))^{s}$, where $c \in \mathbb{F}_{q}$. Then

$$
\left|\sum_{a \in \mathbb{F}_{q}} \xi(f(a))\right| \leq(d-1) \sqrt{q} .
$$

- Gács and Szőnyi: In a Miquelian $3-\left(q^{2}+1, q+1,1\right)$ design, q odd the minimal number of circles through a given point needed to block all circles is always at least or order $\frac{1}{2} \log q$ using Weil's theorem.
- This case involves estimates of quadratic character sums, becomes very/too complicated for other examples.
- Moreover many problems do not have an algebraic description.

Table of Contents

(1) Statement of the main result

(2) Applications in finite geometry
(3) An easier algorithm for a class of GQs

4 General (n, d, r) systems

A technical condition for GQs

A GQ of order (s, t) is called locally sparse if for any set of three points, the number of points collinear with all three points is at most $s+1$.

- Any GQ of order (s, s^{2}) is locally sparse
(Bose-Shrikhande, Cameron)
- In particular, $Q^{-}(5, q)$ is locally sparse.
- $H\left(4, q^{2}\right)$ is not locally sparse.

A weaker theorem for GQs

Theorem

For any $\alpha>4$, there exists $s_{0}(\alpha)$ such that if $s \geq s_{0}(\alpha)$ and $t \geq s(\log s)^{2 \alpha}$, then any locally sparse generalized quadrangle of order (s, t) has a maximal partial ovoid of size at most $s(\log s)^{\alpha}$.

First round

- Fix a point $x \in \mathcal{P}$ and for each line $/$ through x independently flip a coin with heads probability $p s=\frac{s \log t-\alpha s \log \log s}{t}$, where $\alpha>4$.
- On each line / where the coin turned up heads, select uniformly a point of $I \backslash\{x\}$ and denote the set of selected points by S.
- $U=\mathcal{P} \backslash(S \cup\{x\})^{\bowtie}$ (uncovered points not collinear with x).

Second round

Let $x^{\star} \in x^{\perp} \backslash S^{\bowtie}$. On each line $I \in \mathcal{L}$ through x^{\star} with $I \cap U \neq \emptyset$, uniformly and randomly select a point of $I \cap U$. Moreover select a point x^{+}on the line M through x^{\star} and x different from x, and call this set of selected points T. Then clearly $S \cup T \cup\left\{x^{+}\right\}$is a partial ovoid. So we will need to show that $S \cup T \cup\left\{x^{+}\right\}$is maximal, and small.

A form of the Chernoff bound

A sum of independent random variables is concentrated according to the so-called Chernoff Bound. We shall use the Chernoff Bound in the following form. We write $X \sim \operatorname{Bin}(n, p)$ to denote a binomial random variable with probability p over n trials.

Proposition

Let $X \sim \operatorname{Bin}(n, p)$. Then for $\delta \in[0,1]$,

$$
\mathbb{P}(|X-p n| \geq \delta p n) \leq 2 e^{-\delta^{2} p n / 2}
$$

Proof for GQs i

First we show $|S| \lesssim s \log t$ using the Chernoff Bound. There are $t+1$ lines through x, and we independently selected each line with probability $p s$ and then one point on each selected line. So $|S| \sim \operatorname{Bin}(t+1, p s)$ and $\mathbb{E}(|S|)=p s(t+1) \sim s \log t$. By Chernoff, for any $\delta>0$,

$$
\mathbb{P}(|S| \geq(1+\delta) s \log t) \leq 2 \exp \left(-\frac{1}{2} \delta^{2} s \log t\right) \rightarrow 0 .
$$

Therefore a.a.s. $|S| \lesssim s \log t$.

Three key properties

We can show that in selecting S, Properties I - III described below occur simultaneously a.a.s. as $s \rightarrow \infty$:
I. For all lines $\ell \in \mathcal{L}$ disjoint from $x,|\ell \cap U|<\lceil\log s\rceil$.
II. For all $u \in x^{\perp} \backslash S,\left|u^{\perp} \cap U\right| \lesssim s(\log s)^{\alpha}$
III. For $v, w \notin S \cup\{x\} ; v \nsim w,\left|\{v, w\}^{\perp} \cap U\right| \gtrsim(\log s)^{\alpha}$.

Proof for GQs ii

Assuming that a.a.s., S satisfies Properties I - III, we fix an instance of such a partial ovoid S with $|S| \lesssim s \log t$ and let T be as before. By Property II, $|T| \leq X_{X^{\star}} \lesssim s(\log s)^{\alpha}$. Therefore

$$
|S \cup T| \leq|S|+X_{x^{\star}}+1 \lesssim s \log t+s(\log s)^{\alpha} \lesssim s(\log s)^{\alpha}
$$

Proof for GQs iii

For $v \in\left(x^{\perp} \backslash S^{\bowtie}\right) \cup U$ not collinear with x^{\star}, a.a.s., $X_{v x^{\star}} \geq \frac{1}{2}(\log s)^{\alpha}$ by Property III. By Property I, the probability that v is not collinear with any point in T is at most

$$
\left(\frac{\log s-1}{\log s}\right)^{X_{v x^{\star}}} \leq\left(1-\frac{1}{\log s}\right)^{\frac{1}{2}(\log s)^{\alpha}} \leq e^{-\frac{1}{2}(\log s)^{3}}<\frac{1}{s^{5}}
$$

since $\alpha>4$. Hence the expected number of points in $\left(x^{\perp} \backslash S^{\bowtie}\right) \cup \cup$ not collinear with any point in T is at most

$$
s^{-5}|\mathcal{P}| \lesssim \frac{1}{s}
$$

It follows that a.a.s. T covers all points not yet covered by S except those on the line $x x^{\star}$. So $S \cup T \cup\left\{x^{+}\right\}$is a maximal partial ovoid.

Definition of Random variables I

For $u \in x_{\circ}^{\perp}$, let $U(u)$ denote the set of points in $\mathcal{P} \backslash x^{\perp}$ which are not covered by $S \backslash\{u\}$, and define the random variable:

$$
X_{u}=\left|u^{\perp} \cap U(u)\right| .
$$

In the case $u \in x^{\perp} \backslash S$, note that $U(u)=U$, so then $X_{u}=\left|u^{\perp} \cap U\right|$.

Definition of Random variables II

For $v, w \in \mathcal{P} \backslash\{x\}$ non-collinear, let $U(v, w)$ denote the set of points in $\mathcal{P} \backslash x^{\perp}$ which are not covered by $S \backslash\{v, w\}$, and define the random variable:

$$
X_{v w}=\left|\{v, w\}_{\circ}^{\perp} \cap U(v, w)\right| .
$$

In the case $v, w \notin S \cup\{x\}, U(v, w)=U$ and so $X_{v w}=\left|\{v, w\}_{\circ}^{\perp} \cap U\right|$.

Expected values

Lemma

Let $u \in x_{0}^{\perp}$, and let $v, w \in \mathcal{P} \backslash\{x\}$ be a pair of non-collinear points.
Then

$$
\mathbb{E}\left(X_{u}\right) \sim s(\log s)^{\alpha} \quad \text { and } \quad \mathbb{E}\left(X_{v w}\right) \sim(\log s)^{\alpha} .
$$

In addition, if $j \in \mathbb{N}$ and $j t p^{2} \rightarrow 0$ as $s \rightarrow \infty$, then $\mathbb{E}\left(X_{u}\right)^{j} \sim s^{j}(\log s)^{\alpha j}$.

Proof of property I-i

Fix a line $\ell \in \mathcal{L}$ disjoint from x, and let Y_{ℓ} be the number of sequences of $a=\lceil\log s\rceil$ distinct points in $U \cap\left(\ell \backslash x^{\perp}\right)$. Let $R \subset \ell \backslash x^{\perp}$ be a set of a distinct points. Then

$$
\left|\bigcup_{y \in R}\{x, y\}_{\circ}^{\perp}\right|=a t+1
$$

and hence

$$
\mathbb{E}\left(Y_{\ell}\right)=s(s-1)(s-2) \ldots(s-a+1) \cdot(1-p)^{a t+1}
$$

Since $a t p^{2} \rightarrow 0$ and $a^{2} / s \rightarrow 0$, we obtain

$$
\mathbb{E}\left(Y_{\ell}\right) \sim \frac{s^{a}(\log s)^{a \alpha}}{t^{a}}
$$

Proof of property I-ii

Let $A_{s}=\bigcup_{\substack{\ell \in \mathcal{C} \\ x \notin<}}\left[Y_{\ell} \geq 1\right]$. Since $|\mathcal{L}|=(t+1)(s t+1) \sim s t^{2}$ is the total
number of lines,

$$
\mathbb{P}\left(A_{s}\right) \leq \sum_{\substack{\ell \in \mathcal{C} \\ x \notin \ell}} \mathbb{P}\left(Y_{\ell} \geq 1\right) \lesssim s t^{2} \cdot \mathbb{E}\left(Y_{\ell}\right) \sim \frac{s^{a+1}(\log s)^{a \alpha}}{t^{a-2}}
$$

Since $t \geq s(\log s)^{2 \alpha}$ and $a=\lceil\log s\rceil, \mathbb{P}\left(A_{s}\right) \rightarrow 0$ as $s \rightarrow \infty$, as required for Property I.

Practical implementation

The randomized algorithm could be implemented, and we believe it is effective in finding maximal partial ovoids even in (s, t)-quadrangles where s is not too large. In addition, it can be deduced from the proof that the probability that the algorithm does not return a maximal partial ovoid of size at most $s(\log s)^{\alpha}, \alpha>4$, is at most $s^{-\log s}$ if s is large enough.

Table of Contents

(1) Statement of the main result

(2) Applications in finite geometry
(3) An easier algorithm for a class of GQs
4) General (n, d, r) systems

Set systems

- $X=X(S)$ is a set of atoms.
- Set system \mathcal{S} : family of subsets of X referred to as blocks.
- \mathcal{S} is an (n, d, r)-system if $|X|=n$, every atom is contained in d blocks, every block contains r atoms.
- A maximal independent set in a set system \mathcal{S} is a set I of atoms containing no block but such that the addition of any atom to I results in a set containing some block of \mathcal{S}.
- General problem: find the smallest possible size $\gamma_{0}(S)$ of a maximal independent set in \mathcal{S}.

Segre's Problem I.

- What is the smallest possible size for a complete arc in a projective plane?
- \mathcal{S} : family of triples of collinear points in the plane; the atoms are the points of the projective plane.
- Kim-Vu: There are positive constants c and M such that the following holds. In every projective plane of order $q \geq M$, there is a complete arc of size at most $q^{1 / 2} \log ^{c} q(c=300)$.
- If the plane has order q, then \mathcal{S} is an (n, d, r)-system with $n=q^{2}+q+1, r=3$ and $d=(q+1)\binom{q}{2}$.

Sparseness conditions

$$
\text { Let } \delta>0, n \geq r \geq 2 \text { and } d \geq 1 \text {. An }(n, d, r) \text {-system } \mathcal{S} \text { is } \delta \text {-sparse if }
$$

- δ-1 for $x, y \in X(\mathcal{S})$, the number of pairs of blocks $e, f \in \mathcal{S}$ such that $x \in e, y \in f,(e \backslash\{x\})=(f \backslash\{y\})$ is at most $d^{1-\delta}$.
- δ-2 for $a \in[2, r-1]$ and any $A \subseteq X(\mathcal{S})$ with $|A|=a$, the number of blocks in \mathcal{S} containing A is at most $d^{(r-a) /(r-1)-\delta}$.

Main result Note: Work in progress

Theorem

For all $\delta>0$ and $r \geq 2$, there exist a constants $c_{1}(r, \delta), c_{2}(r, \delta)>0$ such that for any δ-sparse (n, d, r)-system \mathcal{S}, there exists a maximal independent set $I \subseteq X(\mathcal{S})$ such that

$$
c_{1}(r, \delta) n\left(\frac{\log d}{d}\right)^{1 /(r-1)} \leq|I| \leq c_{2}(r, \delta) n \frac{\log d}{d^{1 /(r-1)}}
$$

- Bohman-Bennett; randomized greedy algorithm.
- Our approach is iterative greedy using the Lovàsz local lemma
- In fact, we prove a result on (ϵ, δ)-sparse systems.

Segre's problem II.

- $\gamma_{0}(\mathcal{S})$ is roughly at most $\sqrt{3 q} \log q$ if q is large enough.
- Best lower bound is roughly $2 \sqrt{9}$, by Lunelli and Sce.
- Computational evidence by Fisher that the average size of a complete arc in $P G(2, q)$ is close to $\sqrt{3 q \log q}$.
- Main open problem: find lower bounds; in particular does every complete arc have size at least $\sqrt{q} \omega(q)$ for some unbounded function $\omega(q)$.

