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Ramsey’s theorem (for 2 colors)

Theorem (Ramsey)

There exists a least positive integer R(r, s) for which every blue-red
edge coloring of the complete graph on R(r, s) vertices contains a blue
clique on r vertices or a red clique on s vertices.

@ R(3,3): least integer N for which each blue-red edge coloring on
Ky contains either a red or a blue triangle.

@ R(3,3) < 6: friends and strangers.

@ R(3,3) > 5: Pentagon with red edges, then color "inside" edges
blue.
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The probabilistic method (Erdds)

Color each edge of Ky independently with P(R) = P(B) = }.
For |S| = r vertices define X(S) = 1 if monochromatic, else O.

Number of monochromatic subgraphs is X = Z|S|Z,X(S).

Linearity of expectation: E(X) = (7)2'~().

If E(X) < 1 then a non-monochromatic example exists, so

R(r,r) > 272

@ Can one explicitly (pol. time algorithm in nr. of vertices) construct

for some fixed € > 0 a 2-edge coloring of the complete graph on
N > (1 + €)" vertices with no monochromatic clique of size n?
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Sum free sets

@ A subset S of an Abelian group is called sum-free if there are no
elements a,band cin Ssuchthata+ b= c.

@ InZzkio,theset{k+1,k+2,--- 2k + 1} is sum free.

Theorem (Erdds)

Every finite set B of positive integers has a sum-free subset of size
more than §|B|.

Remark: The largest ¢ for which every set B of positive integers has a
sum-free subset of size at least c|B| satisfies % <c< %.
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Proof of the sum free set theorem

@ Pick an integer p = 3k + 2 such that p > 2 max(B).

o /={k+1,--- ,2k+ 1} is sum-free in Zp, and |/| > |3£|-

@ Choose x # 0 uniformly at random in Zp.

@ The map oy : b — xb is an injection from B into Zp.

@ Denote Ay = {b € B: ox(b) € I}. (note A is sumfree)

® Pox(b) € /) = f = Jtto > 1

® E(|Axl) = SpepP(ox(b) € 1) > 3.

@ Hence there exists an A* C B of size larger than |3ﬂ which is sum
free since Ay = xA* is.
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Main Result

@ A d-regular graph is called §-sparse if the number of paths of
length two joining any pair of vertices is at most d'—.

@ independent set I: no two vertices in / form an edge of the graph.

Main Result

Leté,e € Rt and let G be a v-vertex d-regular 5-sparse graph. If d is
large enough relative to 6 and e, then G contains a maximal
independent set of size at most

(1+¢)viogd
—
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The classical generalized quadrangles

@ non-singular quadric of Witt index 2 in PG(3, q) (O™ (4, q)),
PG(4,9) (O(5, q)) and PG(5, q) (O~ (6, q)).

@ non-singular Hermitian variety in PG(3, ¢%) (U(4, %))
or PG(4, %) (U(5, ).

@ Symplectic quadrangle W(q), of order q (Sp(4, q)).

@ Not all GQs are classical (e.g. Tits, Kantor, Payne).
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Small maximal partial ovoids in GQs

Q Previous range for v(Q) Theorem Ref.
Q (5,9) (29, 4%/2] [29,3qlog q] [DBKMS,EH,MS]
Q(4,q), q odd [1.419q, ¢°] [1.4199,2qlog q] | [CDWFS,DBKMS]
H(4,q°) (4%, q°] [9°, 547 log q] [MS]
DH(4,4°) [q°, 9] [¢°,5G° log q] /
H(3,9%), q odd [4°,2¢° log q] [9°, 37 log q] [AELM]

@ +(9Q): Minimal size of maximal partial ovoid.

@ ovoid : set of points, no two of which are collinear.

@ Main theorem: any GQ of order (s, t) has a maximal partial ovoid
of size roughly slog(st).
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Small maximal partial ovoids in polar spaces

Q Known prior Range from MT Ref.

Q(2n, g), q odd [9,9"] [q,(2n —2)qlogq] | [BKMS]
Q(2n,q),q even =q+1 [BKMS]
Q*(2n+1,9) | [29,9",n>3 | [2g,(2n—1)qlogq] | [BKMS]
Q (2n+1,9) |[29,5¢"".n>3| [2q,(2n—1)qlogq] | [BKMS]
W(2n+1,q) —q+1 [BKMS]
H(2n, %) [9%,¢*™"],n >3 | [¢?, (4n —3)G? log q] | [JDBKL]
H2n+1,¢°) | [¢°,9°""],n>2 | [¢°,(4n—1)q%logq] | [JDBKL]
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Other examples

@ Small maximal partial spreads in polar spaces.

@ Maximal partial spreads in projective space PG(n,q),n > 3.

@ For the latter: vertices=lines, edges=intersecting lines.

@ J-sparse system with v = g°"2, d = ¢", so maximal partial
spread of size (n — 2)g" 2 log q.
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Problem: How to prove lower bounds?
Theorem (Weil)

Let ¢ be a character of Fq of order s. Let f(x) be a polynomial of

degree d over Fq such that f(x) # c(h(x))®, where ¢ € Fq. Then

[ D &(f(@)] < (d = 1)va.

acFq

@ Gacs and Szényi: In a Miquelian 3 — (g2 +1,q + 1, 1) design, g
odd the minimal number of circles through a given point needed to
block all circles is always at least or order % log g using Weil’'s
theorem.

@ This case involves estimates of quadratic character sums,
becomes very/too complicated for other examples.

@ Moreover many problems do not have an algebraic description.
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A technical condition for GQs

A GQ of order (s, t) is called locally sparse if for any set of three points,
the number of points collinear with all three points is at most s + 1.

@ Any GQ of order (s, s?) is locally sparse
(Bose-Shrikhande, Cameron)

@ In particular, Q~ (5, q) is locally sparse.
@ H(4,q?) is not locally sparse.
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A weaker theorem for GQs

Theorem

For any a > 4, there exists s,(«) such that if s > s,(«) and

t > s(log 8)2“, then any locally sparse generalized quadrangle of order
(s, t) has a maximal partial ovoid of size at most s(log s)“.
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First round

@ Fix a point x € P and for each line / through x independently flip a

coin with heads probability ps = 2'°&-a8lcelgs ‘where o > 4.
@ On each line / where the coin turned up heads, select uniformly a

point of /'\ {x} and denote the set of selected points by S.

@ U="7P\ (SU{x})™ (uncovered points not collinear with x).
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Second round

Let x* € x*+\ S™. On each line | € £ through x* with / N U # 0,
uniformly and randomly select a point of / N U. Moreover select a point
x* on the line M through x* and x different from x, and call this set of
selected points T. Then clearly SU T U {x"} is a partial ovoid. So we
will need to show that SU T U {x*} is maximal, and small.
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A form of the Chernoff bound

A sum of independent random variables is concentrated according to
the so-called Chernoff Bound. We shall use the Chernoff Bound in the

following form. We write X ~ Bin(n, p) to denote a binomial random
variable with probability p over n trials.

Proposition
Let X ~ Bin(n, p). Then foré € [0,1],

P(|X — pn| > dpn) < 2e~5P/2,
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Proof for GQs i

First we show |S| < slog t using the Chernoff Bound. There are t + 1
lines through x, and we independently selected each line with
probability ps and then one point on each selected line. So

|S| ~ Bin(t+ 1, ps) and E(|S|) = ps(t + 1) ~ slog t. By Chernoff, for
any 6 > 0,

P(|S| > (1 +d)slogt) < 2exp(—%62slog t) — 0.

Therefore a.a.s. |S| < slogt.
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Three key properties

We can show that in selecting S, Properties | — |l described below
occur simultaneously a.a.s. as s — oc:

|. For all lines ¢ € L disjoint from x, |¢ N U] < [log s].

Il. For all u € x\S, |u*+ N U| < s(log s)*
. Forv,w ¢ SU{x};v & w, [{v,w}tnU| > (logs)".
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Proof for GQs ii

Assuming that a.a.s., S satisfies Properties | — Ill, we fix an instance of
such a partial ovoid S with |S| < slogt and let T be as before. By
Property Il, |T| < Xy« < s(log s)*. Therefore

ISUT| < [S|+ Xe +1 < slogt+ s(log 8)* < s(log )
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Proof for GQs iii

For v € (x1\8*) U U not collinear with x*, a.a.s., Xyx« > 3(log s)* by

Property Ill. By Property |, the probability that v is not collinear with
any pointin T is at most

]
|0gS — 1\ Xoxr 1 E(IOgs)a _1(|0 3 1
—5> < (1- < g 2(l08%)” -

( log s ) - (1 log S) =¢ < sd

since a > 4. Hence the expected number of points in (x-\S*) U U not
collinear with any point in T is at most

SOPIS
S

It follows that a.a.s. T covers all points not yet covered by S except
those on the line xx*. So SU T U {x*} is a maximal partial ovoid.
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Definition of Random variables |

For u € x-, let U(u) denote the set of points in 7\ x which are not
covered by S\{u}, and define the random variable:

Xy = |ut N U(u)).

In the case u € x+\ S, note that U(u) = U, so then X, = |u*+ N U].
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Definition of Random variables Il

For v, w € P\{x} non-collinear, let U(v, w) denote the set of points in
P\x* which are not covered by S\{v, w}, and define the random

variable:
Xow = |{v,w}s n U(v,w)|.

In the case v, w ¢ SU {x}, U(v,w) = U and so X,y = |{v,w}: N U|.
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Expected values

Lemma

Letu € x3-, and let v, w € P\{x} be a pair of non-collinear points.
Then

E(Xy) ~ s(logs)* and E(Xuw) ~ (logs)“.

In addition, ifj € N and jip®> — 0 as s — oo, then E(X,) ~ s/(log s).
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Proof of property I-i

Fix a line ¢ € L disjoint from x, and let Y, be the number of sequences
of a = [log s] distinct points in U N (¢\x*). Let R C ¢\x* be a set of a
distinct points. Then

=at+1

Utxrk

yeR

and hence

E(Y,) =s(s—1)(s-2)...(s—a+1)-(1 - p)a+.
Since atp?® — 0 and a?/s — 0, we obtain

59(log s)2*

B(Y) ~ T8
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Proof of property I-ii

Let As = | J[Y: > 1]. Since |£| = (t+ 1)(st + 1) ~ st? is the total

el
Xgl

number of lines,

Sa+1(|0g S)aa

P(As) < ZP( YZ > 1) 5 Stz : E(Yf) ta—2

LeL
XZLl

Since t > s(log 8)?* and a = [log s], P(As) — 0 as s — oo, as required
for Property |.

J. Schillewaert (University of Auckland) SMIS 27/34



Practical implementation

The randomized algorithm could be implemented, and we believe it is
effective in finding maximal partial ovoids even in (s, t)-quadrangles
where s is not too large. In addition, it can be deduced from the proof
that the probability that the algorithm does not return a maximal partial
ovoid of size at most s(log 5)®, a > 4, is at most s~'°¢¢ if s is large
enough.
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Set systems

@ X = X(S) is a set of atoms.

@ Set system S: family of subsets of X referred to as blocks.

@ Sisan (n,d,r)-systemif | X| = n, every atom is contained in d
blocks, every block contains r atoms.

@ A maximal independent set in a set system S is a set / of atoms
containing no block but such that the addition of any atom to /
results in a set containing some block of S.

@ General problem: find the smallest possible size vo(S) of a
maximal independent set in S.
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Segre’s Problem 1.

@ What is the smallest possible size for a complete arc in a
projective plane?

@ S: family of triples of collinear points in the plane; the atoms are
the points of the projective plane.

@ Kim-Vu: There are positive constants ¢ and M such that the
following holds. In every projective plane of order g > M, there is
a complete arc of size at most q'/2 log® g(¢ = 300).

@ If the plane has order q, then Sis an (n, d, r)-system with
n=q¢>+q+1,r=3andd=(q+1)(J).
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Sparseness conditions

Leté >0,n>r>2andd > 1. An (n,d, r)-system S is j-sparse if

@ J-1for x,y € X(S), the number of pairs of blocks e, f € S such
that x c e, y € f, (e\{x}) = (f\{y}) is at most d" 9.

@ j-2forae [2,r — 1] and any A C X(S) with |A| = a, the number of
blocks in S containing A is at most d("—a)/(r=1)-9,
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Main result Note: Work in progress
Theorem

Forall 5 > 0 and r > 2, there exist a constants c;(r,d), ca(r,d) >0

such that for any §-sparse (n,d, r)-system S, there exists a maximal
independent set | C X(S) such that

log d\ 1/(r=1) log d
c1(r,6)n( oi, ) Slllﬁcz(fﬁ)n%-

@ Bohman-Bennett; randomized greedy algorithm.
@ Our approach is iterative greedy using the Lovasz local lemma

@ In fact, we prove a result on (¢, d)-sparse systems.
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Segre’s problem |l.

@ 7,(S) is roughly at most /3qlog q if g is large enough.
@ Best lower bound is roughly 2,/q, by Lunelli and Sce.

@ Computational evidence by Fisher that the average size of a
complete arc in PG(2, q) is close to 1/3qlog q.

@ Main open problem: find lower bounds; in particular does every
complete arc have size at least ,/qw(q) for some unbounded
function w(q).
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