Small maximal independent sets

Jeroen Schillewaert (joint with Michael Tait and Jacques Verstraëte)

Department of Mathematics University of Auckland New Zealand

Table of Contents

Statement of the main result

2 Applications in finite geometry

3 An easier algorithm for a class of GQs

General (n, d, r) systems

Ramsey's theorem (for 2 colors)

Theorem (Ramsey)

There exists a least positive integer R(r, s) for which every blue-red edge coloring of the complete graph on R(r, s) vertices contains a blue clique on r vertices or a red clique on s vertices.

- *R*(3,3): least integer *N* for which each blue-red edge coloring on *K_N* contains either a red or a blue triangle.
- $R(3,3) \le 6$: friends and strangers.
- *R*(3,3) > 5: Pentagon with red edges, then color "inside" edges blue.

The probabilistic method (Erdős)

- Color each edge of K_N independently with $\mathbb{P}(R) = \mathbb{P}(B) = \frac{1}{2}$.
- For |S| = r vertices define X(S) = 1 if monochromatic, else 0.
- Number of monochromatic subgraphs is $X = \sum_{|S|=r} X(S)$.
- Linearity of expectation: $\mathbb{E}(X) = \binom{n}{r} 2^{1 \binom{r}{2}}$.
- If $\mathbb{E}(X) < 1$ then a non-monochromatic example exists, so $R(r, r) \ge 2^{r/2}$.
- Can one explicitly (pol. time algorithm in nr. of vertices) construct for some fixed *ε* > 0 a 2-edge coloring of the complete graph on *N* > (1 + *ε*)ⁿ vertices with no monochromatic clique of size n?

Sum free sets

- A subset S of an Abelian group is called sum-free if there are no elements a, b and c in S such that a + b = c.
- In \mathbb{Z}_{3k+2} , the set $\{k + 1, k + 2, \dots, 2k + 1\}$ is sum free.

Theorem (Erdős)

Every finite set *B* of positive integers has a sum-free subset of size more than $\frac{1}{3}|B|$.

Remark: The largest *c* for which every set *B* of positive integers has a sum-free subset of size at least c|B| satisfies $\frac{1}{3} < c < \frac{12}{29}$.

Proof of the sum free set theorem

- Pick an integer p = 3k + 2 such that $p > 2 \max(B)$.
- $I = \{k + 1, \dots, 2k + 1\}$ is sum-free in \mathbb{Z}_p , and $|I| > \frac{|B|}{3}$.
- Choose $x \neq 0$ uniformly at random in \mathbb{Z}_p .
- The map $\sigma_x : b \mapsto xb$ is an injection from *B* into \mathbb{Z}_p .
- Denote $A_x = \{b \in B : \sigma_x(b) \in I\}$. (note A_x is sumfree)

•
$$\mathbb{P}(\sigma_x(b) \in I) = \frac{|I|}{p-1} = \frac{k+1}{3k+1} > \frac{1}{3}.$$

- $\mathbb{E}(|A_x|) = \sum_{b \in B} \mathbb{P}(\sigma_x(b) \in I) > \frac{|B|}{3}.$
- Hence there exists an A^{*} ⊂ B of size larger than ^{|B|}/₃ which is sum free since A_x = xA^{*} is.

Main Result

- A *d*-regular graph is called δ-sparse if the number of paths of length two joining any pair of vertices is at most *d*^{1-δ}.
- *independent set I*: no two vertices in *I* form an edge of the graph.

Main Result

Let $\delta, \varepsilon \in \mathbb{R}^+$ and let G be a v-vertex d-regular δ -sparse graph. If d is large enough relative to δ and ε , then G contains a maximal independent set of size at most

$$\frac{(1+\varepsilon) v \log d}{d}.$$

Table of Contents

3 An easier algorithm for a class of GQs

The classical generalized quadrangles

- non-singular quadric of Witt index 2 in PG(3, q) ($O^+(4, q)$), PG(4, q) (O(5, q)) and PG(5, q) ($O^-(6, q)$).
- non-singular Hermitian variety in $PG(3, q^2)$ ($U(4, q^2)$) or $PG(4, q^2)$ ($U(5, q^2)$).
- Symplectic quadrangle W(q), of order q (Sp(4, q)).
- Not all GQs are classical (e.g. Tits, Kantor, Payne).

Small maximal partial ovoids in GQs

Q	Previous range for $\gamma(Q)$	Theorem	Ref.
Q ⁻ (5, q)	$[2q, q^2/2]$	$[2q, 3q \log q]$	[DBKMS,EH,MS]
Q(4, q), q odd	[1.419 <i>q</i> , <i>q</i> ²]	[1.419 <i>q</i> , 2 <i>q</i> log <i>q</i>]	[CDWFS,DBKMS]
$H(4,q^2)$	$[q^2, q^5]$	$[q^2, 5q^2 \log q]$	[MS]
$DH(4,q^2)$	$[q^3, q^5]$	$[q^3, 5q^3 \log q]$	/
$H(3, q^2), q \text{ odd}$	$[q^2, 2q^2 \log q]$	$[q^2, 3q^2 \log q]$	[AEL,M]

- $\gamma(Q)$: Minimal size of maximal partial ovoid.
- ovoid : set of points, no two of which are collinear.
- Main theorem: any GQ of order (s, t) has a maximal partial ovoid of size roughly s log(st).

Small maximal partial ovoids in polar spaces

Q	Known prior	Range from MT	Ref.
<i>Q</i> (2 <i>n</i> , <i>q</i>), <i>q</i> odd	$[q,q^n]$	$[q,(2n-2)q\log q]$	[BKMS]
<i>Q</i> (2 <i>n</i> , <i>q</i>), <i>q</i> even	= q + 1		[BKMS]
$Q^+(2n+1,q)$	$[2q,q^n],n\geq 3$	$[2q,(2n-1)q\log q]$	[BKMS]
$Q^{-}(2n+1,q)$	$[2q, \frac{1}{2}q^{n+1}], n \ge 3$	$[2q,(2n-1)q\log q]$	[BKMS]
W(2n + 1, q)	= q + 1		[BKMS]
$H(2n, q^2)$	$[q^2, q^{2n+1}], n \ge 3$	$[q^2, (4n-3)q^2 \log q]$	[JDBKL]
$H(2n + 1, q^2)$	$[q^2, q^{2n+1}], n \ge 2$	$[q^2, (4n-1)q^2 \log q]$	[JDBKL]

- Small maximal partial spreads in polar spaces.
- Maximal partial spreads in projective space $PG(n, q), n \ge 3$.
- For the latter: vertices=lines, edges=intersecting lines.
- δ-sparse system with v = q²ⁿ⁻², d = qⁿ, so maximal partial spread of size (n-2)qⁿ⁻² log q.

Problem: How to prove lower bounds? Theorem (Weil)

Let ξ be a character of \mathbb{F}_q of order s. Let f(x) be a polynomial of degree d over \mathbb{F}_q such that $f(x) \neq c(h(x))^s$, where $c \in \mathbb{F}_q$. Then

$$|\sum_{\boldsymbol{a}\in\mathbb{F}_q}\xi(\boldsymbol{f}(\boldsymbol{a}))|\leq (\boldsymbol{d}-1)\sqrt{q}.$$

- Gács and Szőnyi: In a Miquelian 3 (q² + 1, q + 1, 1) design, q odd the minimal number of circles through a given point needed to block all circles is always at least or order ¹/₂ log q using Weil's theorem.
- This case involves estimates of quadratic character sums, becomes very/too complicated for other examples.
- Moreover many problems do not have an algebraic description.

Table of Contents

3 An easier algorithm for a class of GQs

A technical condition for GQs

A GQ of order (*s*, *t*) is called *locally sparse* if for any set of three points, the number of points collinear with all three points is at most s + 1.

- Any GQ of order (*s*, *s*²) is locally sparse (Bose-Shrikhande, Cameron)
- In particular, $Q^{-}(5, q)$ is locally sparse.
- $H(4, q^2)$ is **not** locally sparse.

A weaker theorem for GQs

Theorem

For any $\alpha > 4$, there exists $s_0(\alpha)$ such that if $s \ge s_0(\alpha)$ and $t \ge s(\log s)^{2\alpha}$, then any locally sparse generalized quadrangle of order (s, t) has a maximal partial ovoid of size at most $s(\log s)^{\alpha}$.

First round

- Fix a point x ∈ P and for each line *I* through x independently flip a coin with heads probability ps = slog t-αslog log s / t, where α > 4.
- On each line *I* where the coin turned up heads, select uniformly a point of *I* \ {*x*} and denote the set of selected points by *S*.
- $U = \mathcal{P} \setminus (S \cup \{x\})^{\bowtie}$ (uncovered points not collinear with *x*).

Second round

Let $x^* \in x^{\perp} \setminus S^{\bowtie}$. On each line $I \in \mathcal{L}$ through x^* with $I \cap U \neq \emptyset$, uniformly and randomly select a point of $I \cap U$. Moreover select a point x^+ on the line *M* through x^* and *x* different from *x*, and call this set of selected points *T*. Then clearly $S \cup T \cup \{x^+\}$ is a partial ovoid. So we will need to show that $S \cup T \cup \{x^+\}$ is maximal, and small.

A form of the Chernoff bound

A sum of independent random variables is concentrated according to the so-called Chernoff Bound. We shall use the Chernoff Bound in the following form. We write $X \sim Bin(n, p)$ to denote a binomial random variable with probability *p* over *n* trials.

Proposition

Let $X \sim Bin(n, p)$. Then for $\delta \in [0, 1]$,

 $\mathbb{P}(|X - pn| \ge \delta pn) \le 2e^{-\delta^2 pn/2}.$

Proof for GQs i

First we show $|S| \leq s \log t$ using the Chernoff Bound. There are t + 1 lines through x, and we independently selected each line with probability ps and then one point on each selected line. So $|S| \sim Bin(t + 1, ps)$ and $\mathbb{E}(|S|) = ps(t + 1) \sim s \log t$. By Chernoff, for any $\delta > 0$,

$$\mathbb{P}(|S| \ge (1+\delta)s\log t) \le 2\exp(-\frac{1}{2}\delta^2 s\log t) \to 0.$$

Therefore a.a.s. $|S| \leq s \log t$.

Three key properties

We can show that in selecting *S*, Properties I – III described below occur simultaneously a.a.s. as $s \to \infty$:

I. For all lines $\ell \in \mathcal{L}$ disjoint from x, $|\ell \cap U| < \lceil \log s \rceil$. II. For all $u \in x^{\perp} \setminus S$, $|u^{\perp} \cap U| \lesssim s(\log s)^{\alpha}$ III. For $v, w \notin S \cup \{x\}$; $v \not\sim w$, $|\{v, w\}^{\perp} \cap U| \gtrsim (\log s)^{\alpha}$. Assuming that a.a.s., *S* satisfies Properties I – III, we fix an instance of such a partial ovoid *S* with $|S| \leq s \log t$ and let *T* be as before. By Property II, $|T| \leq X_{x^*} \leq s(\log s)^{\alpha}$. Therefore

$$|S \cup T| \leq |S| + X_{x^\star} + 1 \lesssim s \log t + s (\log s)^lpha \lesssim s (\log s)^lpha$$

Proof for GQs iii

For $v \in (x^{\perp} \setminus S^{\bowtie}) \cup U$ not collinear with x^* , a.a.s., $X_{vx^*} \ge \frac{1}{2}(\log s)^{\alpha}$ by Property III. By Property I, the probability that v is not collinear with any point in T is at most

$$\left(\frac{\log s - 1}{\log s}\right)^{X_{vx^{\star}}} \leq \left(1 - \frac{1}{\log s}\right)^{\frac{1}{2}(\log s)^{\alpha}} \leq e^{-\frac{1}{2}(\log s)^{3}} < \frac{1}{s^{5}}$$

since $\alpha > 4$. Hence the expected number of points in $(x^{\perp} \setminus S^{\bowtie}) \cup U$ not collinear with any point in T is at most

$$|\mathcal{S}^{-5}|\mathcal{P}|\lesssim rac{1}{s}.$$

It follows that a.a.s. *T* covers all points not yet covered by *S* except those on the line xx^* . So $S \cup T \cup \{x^+\}$ is a maximal partial ovoid.

Definition of Random variables I

For $u \in x_{\circ}^{\perp}$, let U(u) denote the set of points in $\mathcal{P} \setminus x^{\perp}$ which are not covered by $S \setminus \{u\}$, and define the random variable:

$$X_u = |u^{\perp} \cap U(u)|.$$

In the case $u \in x^{\perp} \setminus S$, note that U(u) = U, so then $X_u = |u^{\perp} \cap U|$.

Definition of Random variables II

For $v, w \in \mathcal{P} \setminus \{x\}$ non-collinear, let U(v, w) denote the set of points in $\mathcal{P} \setminus x^{\perp}$ which are not covered by $S \setminus \{v, w\}$, and define the random variable:

$$X_{vw} = |\{v, w\}_{\circ}^{\perp} \cap U(v, w)|.$$

In the case $v, w \notin S \cup \{x\}$, U(v, w) = U and so $X_{vw} = |\{v, w\}_{\circ}^{\perp} \cap U|$.

Expected values

Lemma

Let $u \in x_{\circ}^{\perp}$, and let $v, w \in \mathcal{P} \setminus \{x\}$ be a pair of non-collinear points. Then

 $\mathbb{E}(X_u) \sim s(\log s)^{lpha}$ and $\mathbb{E}(X_{vw}) \sim (\log s)^{lpha}.$

In addition, if $j \in \mathbb{N}$ and $jtp^2 \to 0$ as $s \to \infty$, then $\mathbb{E}(X_u)^j \sim s^j (\log s)^{\alpha j}$.

Proof of property I-i

Fix a line $\ell \in \mathcal{L}$ disjoint from x, and let Y_{ℓ} be the number of sequences of $a = \lceil \log s \rceil$ distinct points in $U \cap (\ell \setminus x^{\perp})$. Let $R \subset \ell \setminus x^{\perp}$ be a set of a distinct points. Then

$$\left|\bigcup_{y\in R} \{x,y\}_{\circ}^{\perp}\right| = at + 1$$

and hence

$$\mathbb{E}(Y_{\ell}) = s(s-1)(s-2)\dots(s-a+1)\cdot(1-p)^{at+1}.$$

Since $atp^2 \rightarrow 0$ and $a^2/s \rightarrow 0$, we obtain

$$\mathbb{E}(Y_\ell) \sim rac{s^a (\log s)^{a lpha}}{t^a}$$

Proof of property I-ii

Let
$$A_s = \bigcup_{\substack{\ell \in \mathcal{L} \\ x \notin \ell}} [Y_\ell \ge 1]$$
. Since $|\mathcal{L}| = (t+1)(st+1) \sim st^2$ is the total number of lines,

$$\mathbb{P}(\mathcal{A}_{\mathcal{S}}) \leq \sum_{\substack{\ell \in \mathcal{L} \ x
ot \in \ell}} \mathbb{P}(Y_{\ell} \geq 1) \lesssim st^2 \cdot \mathbb{E}(Y_{\ell}) \sim rac{s^{a+1}(\log s)^{alpha}}{t^{a-2}}.$$

Since $t \ge s(\log s)^{2\alpha}$ and $a = \lceil \log s \rceil$, $\mathbb{P}(A_s) \to 0$ as $s \to \infty$, as required for Property I.

Practical implementation

The randomized algorithm could be implemented, and we believe it is effective in finding maximal partial ovoids even in (*s*, *t*)-quadrangles where *s* is not too large. In addition, it can be deduced from the proof that the probability that the algorithm does not return a maximal partial ovoid of size at most $s(\log s)^{\alpha}$, $\alpha > 4$, is at most $s^{-\log s}$ if *s* is large enough.

Table of Contents

2 Applications in finite geometry

3 An easier algorithm for a class of GQs

Set systems

- X = X(S) is a set of *atoms*.
- Set system S: family of subsets of X referred to as *blocks*.
- S is an (n, d, r)-system if |X| = n, every atom is contained in d blocks, every block contains r atoms.
- A *maximal independent set* in a set system *S* is a set *I* of atoms containing no block but such that the addition of any atom to *I* results in a set containing some block of *S*.
- General problem: find the smallest possible size γ₀(S) of a maximal independent set in S.

Segre's Problem I.

- What is the smallest possible size for a complete arc in a projective plane?
- S: family of triples of collinear points in the plane; the atoms are the points of the projective plane.
- Kim-Vu: There are positive constants c and M such that the following holds. In every projective plane of order *q* ≥ *M*, there is a complete arc of size at most *q*^{1/2} log^c *q*(*c* = 300).
- If the plane has order q, then S is an (n, d, r)-system with $n = q^2 + q + 1$, r = 3 and $d = (q + 1)\binom{q}{2}$.

Sparseness conditions

Let $\delta > 0$, $n \ge r \ge 2$ and $d \ge 1$. An (n, d, r)-system S is δ -sparse if

- δ -1 for $x, y \in X(S)$, the number of pairs of blocks $e, f \in S$ such that $x \in e, y \in f, (e \setminus \{x\}) = (f \setminus \{y\})$ is at most $d^{1-\delta}$.
- δ-2 for a ∈ [2, r − 1] and any A ⊆ X(S) with |A| = a, the number of blocks in S containing A is at most d^{(r-a)/(r-1)-δ}.

Main result Note: Work in progress

Theorem

For all $\delta > 0$ and $r \ge 2$, there exist a constants $c_1(r, \delta), c_2(r, \delta) > 0$ such that for any δ -sparse (n, d, r)-system S, there exists a maximal independent set $I \subseteq X(S)$ such that

$$c_1(r,\delta)n\Big(rac{\log d}{d}\Big)^{1/(r-1)}\leq |I|\leq c_2(r,\delta)nrac{\log d}{d^{1/(r-1)}}$$

- Bohman-Bennett; randomized greedy algorithm.
- Our approach is iterative greedy using the Lovàsz local lemma
- In fact, we prove a result on (ϵ, δ) -sparse systems.

Segre's problem II.

- $\gamma_{\circ}(S)$ is roughly at most $\sqrt{3q} \log q$ if q is large enough.
- Best lower bound is roughly $2\sqrt{q}$, by Lunelli and Sce.
- Computational evidence by Fisher that the average size of a complete arc in PG(2, q) is close to √3q log q.
- Main open problem: find lower bounds; in particular does every complete arc have size at least √qω(q) for some unbounded function ω(q).