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a tree decomposition represents each vertex as a subtree of a tree T
so that the subtrees of adjacent vertices intersect in T

tree-width := maximum bag size -1

tree-breadth := minimum `
such that for some layering
each bag has  ` vertices in each layer

lemma:
tree-breadth ` ) breadth ` separators
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structure of planar graphs

theorem [Dujmović, Joret, Micek, Morin, Ueckerdt, W. ’19]
every planar graph G is the subgraph of H ! P
for some graph H with treewidth " 8 and some path P
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For
every BFS spanning tree T of a planar graph G
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Proof: Partitioning planar graphs

Key lemma. Suppose

I G+ plane triangulation

I T rooted spanning tree of G+ with root on outer-face

I cycle C partitioned into vertical paths P1, . . . ,Pk , with k 6 6

I G near-triangulation consisting of C and everything inside.

Then G has a partition P into vertical paths where P1, . . . ,Pk 2 P
s.t. = G/P has a tree-decomposition in which every bag has size
at most 9 and some bag contains all vertices corresponding to
P1, . . . ,Pk .
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Applications

Dujmović, J., Micek, Morin, Ueckerdt, Wood ’19 Planar graphs
have bounded queue-number

Dujmović, Esperet, J., Walczak, Wood ’19 Planar graphs have
bounded nonrepetitive chromatic number



k-queue layout of graph G :

vertex ordering v1, . . . , vn of G

partition E1, . . . ,Ek of E (G ) such that
no two edges in Ei are nested

. . . . . . . . . . . . . . .

queue-number qn(G ) := minimum k such that G has a k-queue layout

example qn(tree)=1

open problem [Heath, Leighton, Rosenberg ’92]
do planar graphs have bounded queue-number?
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nonrepetitive colourings

a colouring of a path v1, . . . , v2t is repetitive
if col(vi) = col(vt+i) for i ∈ {1, . . . , t}

a colouring of a graph is nonrepetitive
if no subpath is repetitively coloured

π(G ) := minimum number of colours in a nonrepetitive colouring of G

π(path) " 3 [Thue ’06]

π(max degree ∆ graph) " O(∆2)
[Alon, Grytczuk, Ha"luszczak, Riordan ’02]
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nonrepetitive colourings of planar graphs

π(H) " 4tw(H) [Kündgen & Pelsmajer ’08]
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nonrepetitive colourings of planar graphs

π(H) " 4tw(H) [Kündgen & Pelsmajer ’08]

a colouring is strongly nonrepetitive if for every repetitively coloured
lazy walk v1, . . . , v2t , there exists i ∈ {1, . . . , t} such that vi = vi+t

π∗(G ) := min. # colours in a strongly nonrepetitive colouring of G
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nonrepetitive colourings of planar graphs

π(H) " 4tw(H) [Kündgen & Pelsmajer ’08]

a colouring is strongly nonrepetitive if for every repetitively coloured
lazy walk v1, . . . , v2t , there exists i ∈ {1, . . . , t} such that vi = vi+t

π∗(G ) := min. # colours in a strongly nonrepetitive colouring of G
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