Combinatorial limits and their applications in extremal combinatorics

Part 4

Dan Král'
Masaryk University and
University of Warwick

Flag algebras

- algebra \mathcal{A} of formal linear combinations of graphs addition and multiplication by a scalar
- homomorphism $f_{W}: \mathcal{A} \rightarrow \mathbb{R}$ for a graphon W $f_{W}\left(\sum \alpha_{i} H_{i}\right):=\sum \alpha_{i} d\left(H_{i}, W\right)$ multiplication, elements always in $\operatorname{Ker}\left(f_{W}\right)$
- algebra \mathcal{A}^{R} of R-rooted graphs random homomorphism $f_{W}^{R}: \mathcal{A}^{R} \rightarrow \mathbb{R}$

$$
\frac{f \bullet\left(K_{2}^{\bullet}\right)=1 / 2, f \bullet\left(\overline{K_{2}^{\bullet}}\right)=1 / 2, f \bullet\left(K_{3}^{\bullet}\right)=1 / 4, \ldots}{f \bullet\left(K_{2}^{\bullet}\right)=1, f \bullet\left(\overline{K_{2}^{\bullet}}\right)=0, f^{\bullet}\left(K_{\mathbf{3}}^{\bullet}\right)=3 / 4, \ldots}
$$

Questions?

Operations with rooted graphs

- projection
prob. that deleting non-root vertices yields the flag

$$
\left.\oint=\frac{1}{2}{ }^{\circ}+\frac{1}{2} \cdots+\frac{2}{2}\right\}+\frac{2}{2} \wp
$$

- multiplication
prob. partitioning non-root vertices yields the terms

Expected value

- goal: $\mathbb{E}_{R} f_{W}^{R}(H)=f_{W}\left(\llbracket H \rrbracket_{R}\right)$ for $H \in \mathcal{A}^{R}$
- $f\left(\llbracket H \rrbracket_{\mathbf{\bullet}}\right)=\mathbb{E}_{z} f^{z}(H)$

$$
\llbracket \mathfrak{V} \rrbracket_{0} \frac{1}{3} \mathfrak{Y} \quad \llbracket 0 . \rrbracket_{0}=^{\frac{2}{3}}{ }^{\circ}
$$

- $\llbracket \rrbracket_{R}: \mathcal{A}^{R} \rightarrow \mathcal{A} \quad \llbracket H \rrbracket_{R}=\alpha H^{\prime}$
H^{\prime} is the graph H without distinguishing roots α is the prob. that randomly chosen roots yield H

Questions?

Computing With Flags

- simple applications yields results such as $f_{W}\left(K_{2}\right)>1 / 2 \Rightarrow f_{W}\left(K_{3}\right)>0$ for every W $f_{W}\left(K_{3}+\overline{K_{3}}\right) \geq 1 / 4$ for every W
- shorthand notation for $x, y \in \mathcal{A}$

$$
\begin{aligned}
& x=y \Leftrightarrow \forall W f_{W}(x)=f_{W}(y) \\
& x \geq 0 \Leftrightarrow \forall W f_{W}(x) \geq 0
\end{aligned}
$$

- What can we use in computations?
$x^{2} \geq 0$ for every $x \in \mathcal{A}$
$\llbracket x^{2} \rrbracket_{R} \geq 0$ for every $x \in \mathcal{A}^{R}$

Goodman's Theorem

(

Questions?

Flag algebras

- algebra \mathcal{A} of formal linear combinations of graphs
- homomorphism $f_{W}: \mathcal{A} \rightarrow \mathbb{R}$ for a graphon W $f_{W}\left(\sum \alpha_{i} H_{i}\right):=\sum \alpha_{i} d\left(H_{i}, W\right)$ multiplication, other relations between elements
- algebra \mathcal{A}^{R} of R-rooted graphs random homomorphism $f_{W}^{R}: \mathcal{A}^{R} \rightarrow \mathbb{R}$ multiplication, average operator $\llbracket \cdot \rrbracket_{R}: \mathcal{A}^{R} \rightarrow \mathcal{A}$ $\mathbb{E}_{R} f_{W}^{R}(x)=f_{W}\left(\llbracket x \rrbracket_{R}\right)$ for every $x \in \mathcal{A}^{R}$
- $f_{W}\left(\llbracket x^{2} \rrbracket_{R}\right) \geq 0$ - how to find suitable x ?

SDP FORMULATION

- find maximum α_{0} such that $f_{W}\left(G_{0}\right) \geq \alpha_{0}$ assming $f_{W}\left(G_{i}\right) \geq \alpha_{i}$ where $G_{0}, \ldots, G_{k} \in \mathcal{A}$
- What inequalities can we use?
$f_{W}\left(G^{\prime}\right) \geq 0$ for any graph G^{\prime}
$f_{W}\left(K_{1}\right)=1$ where K_{1} expressed in n-vertex graphs $f_{W}\left(\llbracket x^{2} \rrbracket_{R}\right) \geq 0$ for $x \in \mathcal{A}^{R}$
- let H_{1}, \ldots, H_{m} be elements of $\mathcal{A}^{R}, h=\left(H_{1}, \ldots, H_{m}\right)$ if $M \succeq 0$, then $f_{W}\left(\llbracket h^{T} M h \rrbracket_{R}\right) \geq 0$

SDP FORMULATION

- prove $f_{W}\left(G_{0}\right) \geq \alpha_{0}$ assuming $f_{W}\left(G_{i}\right) \geq \alpha_{i}$
- find $\gamma_{i} \geq 0, \delta_{0} \in \mathbb{R}, \delta_{i} \geq 0, M \succeq 0$
$G_{0}=\sum_{i=1}^{k} \gamma_{i} G_{i}+\sum_{i=1}^{\ell}\left(\delta_{0}+\delta_{i}\right) G_{i}^{\prime}+\llbracket h^{T} M h \rrbracket_{R}$
$\alpha_{0}=\delta_{0}+\sum_{i=1}^{k} \gamma_{i} \alpha_{i}$
where $G_{1}^{\prime}, \ldots, G_{\ell}^{\prime}$ are all n-vert. graphs and $h \in\left(\mathcal{A}^{R}\right)^{m}$
- $\gamma_{i} \times f_{W}\left(G_{i}\right) \geq \gamma_{i} \times \alpha_{i}$
$\delta_{0} \times f_{W}\left(G_{1}^{\prime}+\cdots+G_{\ell}^{\prime}\right)=\delta_{0} \times 1$
$\delta_{i} \times f_{W}\left(G_{i}^{\prime}\right) \geq 0$
$f_{W}\left(\llbracket h^{T} M h \rrbracket_{R}\right) \geq 0$

SDP ExAMPLE

- prove $f_{W}\left(\overline{K_{3}}+K_{3}\right) \geq \alpha_{0}$ for maximum α_{0}
- $\left(G_{1}^{\prime}, \ldots, G_{4}^{\prime}\right)=\left(\overline{K_{3}}, \overline{K_{1,2}}, K_{1,2}, K_{3}\right), h=\left(\overline{K_{2}}, K_{2}^{\bullet}\right)$
- SDP: $\max \langle C, X\rangle$ s.t. $\left\langle A_{i}, X\right\rangle=b_{i}, X \succeq 0, X \in \mathbb{R}^{8 \times 8}$

SDP FORMULATION

- prove $f_{W}\left(G_{0}\right) \geq \alpha_{0}$ if $f_{W}\left(G_{i}\right) \geq \alpha_{i}$
- find $\gamma_{i} \geq 0, \delta_{0} \in \mathbb{R}, \delta_{i} \geq 0, M \succeq 0$ $G_{0}=\sum_{i=1}^{k} \gamma_{i} G_{i}+\sum_{i=1}^{\ell}\left(\delta_{0}+\delta_{i}\right) G_{i}^{\prime}+\llbracket h^{T} M h \rrbracket_{R}$ $\alpha_{0}=\delta_{0}+\sum_{i=1}^{k} \gamma_{i} \alpha_{i}$
where $G_{1}^{\prime}, \ldots, G_{\ell}^{\prime}$ are all n-vert. graphs and $h \in\left(\mathcal{A}^{R}\right)^{m}$
- SDP: $\max \langle C, X\rangle$ s.t. $\left\langle A_{i}, X\right\rangle=b_{i}$ and $X \succeq 0$ X of size $k+2+\ell+m$, diagonal $\gamma_{i}, \pm \delta_{0}, \delta_{i}, M$ ℓ constraints, b_{i} is the coefficient of G_{i}^{\prime} in G_{0}

Questions?

Thank you for your attention!

