Combinatorial limits and their applications in extremal combinatorics

Part 3

Dan Král'
Masaryk University and
University of Warwick

Permutations

- permutation of order n : order on numbers $1, \ldots, n$ subpermutation: 453216 $\longrightarrow 213$
- density of a permutation π in a permutation Π :

$$
d(\pi, \Pi)=\frac{\# \text { subpermutations of } \Pi \text { that are } \pi}{\# \text { all subpermutations of order } \pi}
$$

- $\left(\Pi_{j}\right)_{j \in \mathbb{N}}$ convergent if $\exists \lim _{j \rightarrow \infty} d\left(\pi, \Pi_{j}\right)$ for every π

Representation of A Limit

- probability measure μ on $[0,1]^{2}$ with unit marginals $\mu([a, b] \times[0,1])=\mu([0,1] \times[a, b])=b-a$
Hoppen, Kohayakawa, Moreira, Ráth and Sampaio
- μ-random permutation choose n random points, x - and y-coordinates

QuAsIRANDOM GRAPHS

- Thomason, and Chung, Graham and Wilson (1980's)
- a sequence G_{i} is quasirandom if $d\left(H, G_{i}\right) \approx d\left(H, G_{n, p}\right)$ G_{i} converges to the constant graphon W_{p}
- $d\left(H, G_{i}\right) \rightarrow d\left(H, W_{p}\right)$ for every H if and only if $h\left(K_{2}, G_{i}\right) \rightarrow p$ and $h\left(C_{4}, G_{i}\right) \rightarrow p^{4}$
- $h(H, G)=$ prob. inj. map $H \rightarrow G$ is a homomorphism $h(\cdot, G)$ and $d(\cdot, G)$ for determine each other

QuAsirandom Graphs

- Thomason, and Chung, Graham and Wilson (1980's)
- a sequence G_{i} is quasirandom if $d\left(H, G_{i}\right) \approx d\left(H, G_{n, p}\right)$ G_{i} converges to the constant graphon W_{p}
- $d\left(H, G_{i}\right) \rightarrow d\left(H, W_{p}\right)$ for every H if and only if $h\left(K_{2}, G_{i}\right) \rightarrow p$ and $h\left(C_{4}, G_{i}\right) \rightarrow p^{4}$
- $W \equiv p \Leftrightarrow h\left(K_{2}, W\right)=p$ and $h\left(C_{4}, W\right)=p^{4}$

QUASIRANDOM PERMUTATIONS

- property $P(k)$ of $\left(\Pi_{j}\right)_{j \in \mathbb{N}}: d\left(\sigma, \Pi_{j}\right) \rightarrow 1 / k$! for $\forall \sigma \in S_{k}$
- Question (Graham): Is there k_{0} such $\forall k P\left(k_{0}\right) \Rightarrow P(k)$?
- Theorem (K., Pikhurko): yes, $k_{0}=4$; best possible

$$
\frac{1}{81}=\left(\int F(x, y) x y \mathrm{~d} x \mathrm{~d} y\right)^{2} \leq \frac{1}{9} \int F(x, y)^{2} \mathrm{~d} x \mathrm{~d} y=\frac{1}{81}
$$

Questions?

Dense graph convergence

- $d(H, G)=$ probability $|H|$-vertex subgraph of G is H
- a sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ of graphs is convergent if $d\left(H, G_{n}\right)$ converges for every H
- examples of convergent sequences: complete and complete bipartite graphs K_{n} and $K_{\alpha n, n}$ Erdős-Rényi random graphs $G_{n, p}$

Limit object: GRAPHON

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- W-random graph of order n random points $x_{i} \in[0,1]$, edge probability $W\left(x_{i}, x_{j}\right)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H
- W is a limit of $\left(G_{n}\right)_{n \in \mathbb{N}}$ if $d(H, W)=\lim _{n \rightarrow \infty} d\left(H, G_{n}\right)$
\square

\square

Limit object: Graphon

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- W-random graph of order n random points $x_{i} \in[0,1]$, edge probability $W\left(x_{i}, x_{j}\right)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H
- W is a limit of $\left(G_{n}\right)_{n \in \mathbb{N}}$ if $d(H, W)=\lim _{n \rightarrow \infty} d\left(H, G_{n}\right)$
- W-random graphs converge to W with probability one
- every convergent sequence of graphs has a limit

Flag algebras

- the flag algebra method independent of graph limits we introduce the method using graphons for simplicity
- algebra \mathcal{A} of formal linear combinations of graphs addition and multiplication by a scalar
- homomorphism f_{W} from \mathcal{A} to \mathbb{R} for a graphon W $f_{W}\left(\sum \alpha_{i} H_{i}\right):=\sum \alpha_{i} d\left(H_{i}, W\right)$
- examples: $f_{W}\left(K_{2}\right)=d\left(K_{2}, W\right)$
$f_{W}\left(K_{2}-K_{3}\right)=d\left(K_{2}, W\right)-d\left(K_{3}, W\right)$

Multiplication

- defined $f_{W}(H):=d(H, W)$ and extended linearly
- aim: define multiplication on \mathcal{A} preserved by f_{W} $f_{W}\left(H_{1} \times H_{2}\right)=f_{W}\left(H_{1}\right) \cdot f_{W}\left(H_{2}\right)$
- $H_{1} \times H_{2}=\sum_{H} \frac{\left|\left\{(A, B) \mid V(H)=A \cup B, H[A] \cong H_{1}, H[B] \cong H_{2}\right\}\right|}{\binom{\left|H_{1}\right|+\left|H_{1}\right|}{\left|H_{2}\right|}} H$

Kernel of the map

- defined $f_{W}(H):=d(H, W)$ and extended linearly
- $\operatorname{Ker}\left(f_{W}\right)$ always contains certain elements

$$
f_{W}\left(K_{2}\right)=\frac{1}{3} f_{W}\left(\overline{K_{1,2}}\right)+\frac{2}{3} f_{W}\left(K_{1,2}\right)+\frac{3}{3} f_{W}\left(K_{3}\right)
$$

- let \mathcal{A}^{\prime} be the space generated by $H-\sum_{H^{\prime}} d\left(H, H^{\prime}\right) H^{\prime}$ $\mathcal{A}^{\prime} \subseteq \operatorname{Ker}\left(f_{W}\right) \Rightarrow$ homomorphism $f_{W}: \mathcal{A} / \mathcal{A}^{\prime} \rightarrow \mathbb{R}$

Rooted homomorphisms

- consider a graph G with a distinguish vertex (root) a random sample always includes the root
- algebra \mathcal{A}^{\bullet} on combinations of rooted graphs
- rooted graphon \rightarrow a homomorphism from \mathcal{A}^{\bullet} to \mathbb{R} random choice of the root $x_{0} \rightarrow$ probability distribution on homomorphisms $f^{x_{0}}$ from \mathcal{A}^{\bullet} to \mathbb{R}

$$
\frac{f \bullet\left(K_{2}^{\bullet}\right)=1 / 2, f \bullet\left(\overline{K_{2}^{\bullet}}\right)=1 / 2, f \bullet\left(K_{3}^{\bullet}\right)=1 / 4, \ldots}{f \bullet\left(K_{2}^{\bullet}\right)=1, f \bullet\left(\overline{K_{2}^{\bullet}}\right)=0, f^{\bullet}\left(K_{3}^{\bullet}\right)=3 / 4, \ldots}
$$

Rooted homomorphisms

- algebra \mathcal{A}^{\bullet} of combinations of rooted graphs random choice of the root $x_{0} \rightarrow$ probability distribution on homomorphisms $f^{x_{0}}$ from \mathcal{A}^{\bullet} to \mathbb{R}
- the value $f_{W}^{x_{0}}(H)$ for H with root v_{0} is $\frac{k!}{\mid \text { Aut }(H) \mid} \times$ $\int \prod_{v_{i} v_{j} \in E(H)} W\left(x_{i}, x_{j}\right) \prod_{v_{i} v_{j} \notin E(H)}\left(1-W\left(x_{i}, x_{j}\right)\right) \mathrm{d} x_{1} \cdots x_{k}$

$$
\frac{f \bullet\left(K_{2}^{\bullet}\right)=1 / 2, f \bullet\left(\overline{K_{2}^{\mathbf{\bullet}}}\right)=1 / 2, f \bullet\left(K_{3}^{\bullet}\right)=1 / 4, \ldots}{f\left(K_{2}^{\bullet}\right)=1, f \bullet\left(\overline{K_{2}^{\bullet}}\right)=0, f^{\bullet}\left(K_{3}^{\bullet}\right)=3 / 4, \ldots}
$$

GENERAL ROOTED GRAPHS

- fix a graph R with vertices r_{1}, \ldots, r_{k} algebra \mathcal{A}^{R} of combinations of R-rooted graphs
- random homomorphism f^{R} from \mathcal{A}^{R} to \mathbb{R}
random choice of the roots x_{1}, \ldots, x_{k}
the roots do not induce $R \Rightarrow f^{R} \equiv 0$
otherwise, sampling $|H|-k$ vertices \Rightarrow prob. $f^{R}(H)$

$$
\begin{aligned}
& f^{K_{2}}\left(K_{3}^{K_{2}}\right)=0, f^{K_{2}}\left(K_{4}^{K_{2}}\right)=0, f^{K_{2}}\left(K_{1,2}^{K_{2}}\right)=0, \ldots \\
& f^{K_{2}}\left(K_{3}^{K_{2}}\right)=1 / 2, f^{K_{2}}\left(K_{4}^{K_{2}}\right)=1 / 4, f^{K_{2}}\left(K_{1,2}^{K_{2}}\right)=1 / 2, \ldots \\
& f^{K_{2}}\left(K_{3}^{K_{2}}\right)=1 / 2, f^{K_{2}}\left(K_{4}^{K_{2}}\right)=1 / 4, f^{K_{2}}\left(K_{1,2}^{K_{2}}\right)=0, \ldots \\
& f^{K_{2}}\left(K_{3}^{K_{2}}\right)=1, f^{K_{2}}\left(K_{4}^{K_{2}}\right)=3 / 4, f^{K_{2}}\left(K_{1,2}^{K_{2}}\right)=0, \ldots
\end{aligned}
$$

Questions?

Thank you for your attention!

