Combinatorial limits and their applications in extremal combinatorics

Part 3

Dan Král'
Masaryk University and
University of Warwick

Rogla July 2019

PERMUTATIONS

- permutation of order n: order on numbers $1, \ldots, n$ subpermutation: $4\underline{53}21\underline{6} \longrightarrow 213$
- density of a permutation π in a permutation Π :

$$d(\pi, \Pi) = \frac{\text{\# subpermutations of } \Pi \text{ that are } \pi}{\text{\# all subpermutations of order } \pi}$$

• $(\Pi_j)_{j\in\mathbb{N}}$ convergent if $\exists \lim_{j\to\infty} d(\pi,\Pi_j)$ for every π

Representation of a limit

- probability measure μ on $[0,1]^2$ with unit marginals $\mu([a,b]\times[0,1])=\mu([0,1]\times[a,b])=b-a$ Hoppen, Kohayakawa, Moreira, Ráth and Sampaio
- μ -random permutation choose n random points, x- and y-coordinates

QUASIRANDOM GRAPHS

- Thomason, and Chung, Graham and Wilson (1980's)
- a sequence G_i is quasirandom if $d(H, G_i) \approx d(H, G_{n,p})$ G_i converges to the constant graphon W_p
- $d(H, G_i) \to d(H, W_p)$ for every H if and only if $h(K_2, G_i) \to p$ and $h(C_4, G_i) \to p^4$
- $h(H,G) = \text{prob. inj. map } H \to G \text{ is a homomorphism } h(\cdot,G) \text{ and } d(\cdot,G) \text{ for determine each other}$

QUASIRANDOM GRAPHS

- Thomason, and Chung, Graham and Wilson (1980's)
- a sequence G_i is quasirandom if $d(H, G_i) \approx d(H, G_{n,p})$ G_i converges to the constant graphon W_p
- $d(H, G_i) \to d(H, W_p)$ for every H if and only if $h(K_2, G_i) \to p$ and $h(C_4, G_i) \to p^4$
- $W \equiv p \Leftrightarrow h(K_2, W) = p \text{ and } h(C_4, W) = p^4$

QUASIRANDOM PERMUTATIONS

- property P(k) of $(\Pi_j)_{j\in\mathbb{N}}$: $d(\sigma,\Pi_j)\to 1/k!$ for $\forall \sigma\in S_k$
- Question (Graham): Is there k_0 such $\forall k \ P(k_0) \Rightarrow P(k)$?
- Theorem (K., Pikhurko): yes, $k_0 = 4$; best possible

$$\frac{1}{81} = \left(\int F(x,y)xy \, dxdy \right)^2 \le \frac{1}{9} \int F(x,y)^2 dxdy = \frac{1}{81}$$

$$\int F(x,y) = \begin{vmatrix} & & & & \\ & & & \\ & & & \\ & & & \end{vmatrix} = \begin{vmatrix} 123 & 123 & 132 \\ 132 & 213 & 213 \\ 231 & 312 & 321 \end{vmatrix}$$

Dense Graph Convergence

- d(H,G) = probability |H| -vertex subgraph of G is H
- a sequence $(G_n)_{n\in\mathbb{N}}$ of graphs is convergent if $d(H, G_n)$ converges for every H
- examples of convergent sequences: complete and complete bipartite graphs K_n and $K_{\alpha n,n}$ Erdős-Rényi random graphs $G_{n,p}$

LIMIT OBJECT: GRAPHON

- graphon $W: [0,1]^2 \to [0,1]$, s.t. W(x,y) = W(y,x)
- W-random graph of order nrandom points $x_i \in [0, 1]$, edge probability $W(x_i, x_j)$
- d(H, W) = prob. |H|-vertex W-random graph is H
- W is a limit of $(G_n)_{n\in\mathbb{N}}$ if $d(H,W) = \lim_{n\to\infty} d(H,G_n)$

LIMIT OBJECT: GRAPHON

- graphon $W: [0,1]^2 \to [0,1]$, s.t. W(x,y) = W(y,x)
- W-random graph of order nrandom points $x_i \in [0, 1]$, edge probability $W(x_i, x_j)$
- d(H, W) = prob. |H|-vertex W-random graph is H
- W is a limit of $(G_n)_{n\in\mathbb{N}}$ if $d(H,W) = \lim_{n\to\infty} d(H,G_n)$
- W-random graphs converge to W with probability one
- every convergent sequence of graphs has a limit

FLAG ALGEBRAS

- the flag algebra method independent of graph limits we introduce the method using graphons for simplicity
- algebra \mathcal{A} of formal linear combinations of graphs addition and multiplication by a scalar
- homomorphism f_W from \mathcal{A} to \mathbb{R} for a graphon W $f_W(\sum \alpha_i H_i) := \sum \alpha_i d(H_i, W)$
- examples: $f_W(K_2) = d(K_2, W)$ $f_W(K_2 - K_3) = d(K_2, W) - d(K_3, W)$

MULTIPLICATION

- defined $f_W(H) := d(H, W)$ and extended linearly
- aim: define multiplication on \mathcal{A} preserved by f_W $f_W(H_1 \times H_2) = f_W(H_1) \cdot f_W(H_2)$
- $H_1 \times H_2 = \sum_{H} \frac{|\{(A,B)|V(H) = A \cup B, H[A] \cong H_1, H[B] \cong H_2\}|}{\binom{|H_1| + |H_2|}{|H_1|}} H$

$$\times = \frac{1}{6} + \frac{2}{6} + \frac{3}{6} + \frac{1}{6} + \frac{3}{6} + \frac{1}{6} +$$

KERNEL OF THE MAP

- defined $f_W(H) := d(H, W)$ and extended linearly
- Ker (f_W) always contains certain elements $f_W(K_2) = \frac{1}{3} f_W(\overline{K_{1,2}}) + \frac{2}{3} f_W(K_{1,2}) + \frac{3}{3} f_W(K_3)$

• let \mathcal{A}' be the space generated by $H - \sum_{H'} d(H, H')H'$ $\mathcal{A}' \subseteq \operatorname{Ker}(f_W) \Rightarrow \text{homomorphism } f_W : \mathcal{A}/\mathcal{A}' \to \mathbb{R}$

ROOTED HOMOMORPHISMS

- consider a graph G with a distinguish vertex (root) a random sample always includes the root
- algebra \mathcal{A}^{\bullet} on combinations of rooted graphs
- rooted graphon \to a homomorphism from \mathcal{A}^{\bullet} to \mathbb{R} random choice of the root $x_0 \to \text{probability distribution}$ on homomorphisms f^{x_0} from \mathcal{A}^{\bullet} to \mathbb{R}

$$\frac{f^{\bullet}(K_{2}^{\bullet}) = 1/2, \ f^{\bullet}(\overline{K_{2}^{\bullet}}) = 1/2, \ f^{\bullet}(K_{3}^{\bullet}) = 1/4, \dots}{f^{\bullet}(K_{2}^{\bullet}) = 1, \ f^{\bullet}(\overline{K_{2}^{\bullet}}) = 0, \ f^{\bullet}(K_{3}^{\bullet}) = 3/4, \dots}$$

ROOTED HOMOMORPHISMS

- algebra \mathcal{A}^{\bullet} of combinations of rooted graphs random choice of the root $x_0 \to \text{probability distribution}$ on homomorphisms f^{x_0} from \mathcal{A}^{\bullet} to \mathbb{R}
- the value $f_W^{x_0}(H)$ for H with root v_0 is $\frac{k!}{|\operatorname{Aut}^{\bullet}(H)|} \times \int \prod_{v_i v_j \in E(H)} W(x_i, x_j) \prod_{v_i v_j \notin E(H)} (1 W(x_i, x_j)) dx_1 \cdots x_k$

$$\frac{f^{\bullet}(K_2^{\bullet}) = 1/2, \, f^{\bullet}(\overline{K_2^{\bullet}}) = 1/2, \, f^{\bullet}(K_3^{\bullet}) = 1/4, \dots}{f^{\bullet}(K_2^{\bullet}) = 1, \, f^{\bullet}(\overline{K_2^{\bullet}}) = 0, \, f^{\bullet}(K_3^{\bullet}) = 3/4, \dots}$$

GENERAL ROOTED GRAPHS

- fix a graph R with vertices r_1, \ldots, r_k algebra \mathcal{A}^R of combinations of R-rooted graphs
- random homomorphism f^R from \mathcal{A}^R to \mathbb{R} random choice of the roots x_1, \ldots, x_k the roots do not induce $R \Rightarrow f^R \equiv 0$ otherwise, sampling |H| k vertices \Rightarrow prob. $f^R(H)$

$$\frac{f^{K_2}(K_3^{K_2}) = 0, f^{K_2}(K_4^{K_2}) = 0, f^{K_2}(K_{1,2}^{K_2}) = 0, \dots}{f^{K_2}(K_3^{K_2}) = 1/2, f^{K_2}(K_4^{K_2}) = 1/4, f^{K_2}(K_{1,2}^{K_2}) = 1/2, \dots}$$

$$\frac{f^{K_2}(K_3^{K_2}) = 1/2, f^{K_2}(K_4^{K_2}) = 1/4, f^{K_2}(K_{1,2}^{K_2}) = 0, \dots}{f^{K_2}(K_3^{K_2}) = 1, f^{K_2}(K_4^{K_2}) = 3/4, f^{K_2}(K_{1,2}^{K_2}) = 0, \dots}$$

Thank you for your attention!