Combinatorial limits and their applications in extremal combinatorics

Part 2

Dan Král' Masaryk University and University of Warwick

Rogla

July 2019

Chernoff Bound

- independent zero-one random variables Z_1, \ldots, Z_n concentration of $X = Z_1 + \cdots + Z_n$ around $\mathbb{E}X$
- Chernoff Bound $\mathbb{P}\left(|X - \mathbb{E}X| \ge \delta \mathbb{E}X\right) \le 2e^{\frac{-\delta^2 \mathbb{E}X}{3}}$ for every $\delta \in [0, 1]$
- if each Z_i is one with probability p, then $\mathbb{P}(|X - pn| \ge \delta pn) \le 2e^{\frac{-\delta^2 pn}{3}}$

MARTINGALES

- martingale is a sequence of random variables X_n $\mathbb{E}(X_{n+1}|X_1,\ldots,X_n) = X_n$ for every $n \in \mathbb{N}$
- Azuma-Hoeffding inequality suppose that $\mathbb{E}X_n = X_0$ and $|X_n - X_{n-1}| \le c_n$ $\mathbb{P}(|X_n - X_0| \ge t) \le 2e^{\frac{-t^2}{2\sum_{k=1}^n c_k^2}}$
- Doob's Martingale Convergence Theorem (corr.) if $|X_n| < K$, then $X_n \to X$ almost everywhere

DENSE GRAPH CONVERGENCE

- d(H,G) = probability |H|-vertex subgraph of G is H
- a sequence $(G_n)_{n \in \mathbb{N}}$ of graphs is convergent if $d(H, G_n)$ converges for every H
- examples of convergent sequences: complete and complete bipartite graphs K_n and $K_{\alpha n,n}$ Erdős-Rényi random graphs $G_{n,p}$

LIMIT OBJECT: GRAPHON

- graphon $W : [0,1]^2 \to [0,1]$, s.t. W(x,y) = W(y,x)
- W-random graph of order nrandom points $x_i \in [0, 1]$, edge probability $W(x_i, x_j)$
- d(H, W) = prob. |H|-vertex W-random graph is H
- W is a limit of $(G_n)_{n \in \mathbb{N}}$ if $d(H, W) = \lim_{n \to \infty} d(H, G_n)$

GRAPHONS AS LIMITS

- Uniqueness of a graphon representing a sequence.
- Is every graphon a limit of convergent sequence?
- Does every convergent sequence have a limit?

W-RANDOM GRAPHS CONVERGE

- A sequence of W-random graphs with increasing orders converges with probability one.
- fix $n \in \mathbb{N}$, a graph H and a graphon W
- $X_i = \exp$. number of H in an *n*-vertex W-rand. graph after fixing the first i vertices and edges between them

• apply Azuma-Hoeffding inequality with $c_i = n^{|H|-1}$ $\mathbb{P}\left(|X_n - X_0| \ge \varepsilon n^{|H|}\right) \le 2e^{-\varepsilon^2 n/2}$ $\mathbb{P}\left(|X_n - X_0| \ge t\right) \le 2e^{\frac{-t^2}{2\sum_{k=1}^n c_k^2}}$

W-RANDOM GRAPHS CONVERGE

- A sequence of W-random graphs with increasing orders converges with probability one.
- $X_i = \exp$ number of H in an n-vertex W-rand. graph after fixing the first i vertices and edges between them $\mathbb{P}\left(\frac{|X_n - X_0|}{n^{|H|}} \ge \varepsilon\right) \le 2e^{-\varepsilon^2 n/2}$
- the sum of $2e^{-\varepsilon^2 n/2}$ is finite for every $\varepsilon > 0$
- Borel-Cantelli \Rightarrow the sequence converges with prob. one

•
$$X_0 \approx \frac{d(H,W)n^{|H|}}{|H|!} \Rightarrow$$
 the graphon W is its limit

GRAPHONS AS LIMITS

- Uniqueness of a graphon representing a sequence.
- Is every graphon a limit of convergent sequence?
- Does every convergent sequence have a limit?

GRAPH REGULARITY

- Frieze-Kannan regularity, Szemerédi regularity
- $\forall \varepsilon > 0 \ \exists K_{\varepsilon}$ such that every graph G has an ε -regular equipartition V_1, \ldots, V_k with $k \leq K_{\varepsilon}$ $||V_i| - |V_j|| \leq 1$ for all i and j
- equipartition $V_1, \ldots, V_k \to \text{density matrix } A_{ij} = \frac{e(V_i, V_j)}{|V_i| |V_j|}$
- $\forall \delta > 0, H \exists \varepsilon > 0$ such that the density matrix of an ε -regular partition determines d(H, G) upto an δ -error
- the lemma holds with prepartitions

EXISTENCE OF LIMIT GRAPHON

- fix a convergent sequence G_i , $i \in \mathbb{N}$, of graphs
- set $\varepsilon_j = 2^{-j}$ and fix ε_1 -regular partition of G_i fix ε_{j+1} -regular partition refining the ε_j -regular one
- take a subsequence G'_i of G_i such that all but finitely many ε_j -regular partitions have the same num. parts
- let A^{ij} be the density matrix for G_i and ε_j
- take a subsequence G''_i of G'_i such that A^{ij} coordinate-wise converge for every j

EXISTENCE OF LIMIT GRAPHON

- a convergent sequence G_i , density matrices A^{ij} let A^j be the coordinate-wise limit of A^{ij}
- interpret A^j as a random variable on $[0,1]^2$ and apply Doob's Martingale Convergence Theorem in this way, we obtain a graphon W
- relate d(H, W) to the density of H based on A^j

OTHER COMBINATORIAL OBJECTS

- dense graph convergence convergence of substructure densities
- extendable to other combinatorial structures directed graphs, edge-colored graphs, hypergraphs partial orders, permutations, ...
- sparse graph convergence

Benjamini-Schramm convergence, local-global conv., partition convergence, large deviation convergence, ...

PERMUTATIONS

- permutation of order n: order on numbers $1, \ldots, n$ subpermutation: $4\underline{53}21\underline{6} \longrightarrow 213$
- density of a permutation π in a permutation Π : $d(\pi, \Pi) = \frac{\# \text{ subpermutations of } \Pi \text{ that are } \pi}{\# \text{ all subpermutations of order } \pi}$
- $(\Pi_j)_{j \in \mathbb{N}}$ convergent if $\exists \lim_{j \to \infty} d(\pi, \Pi_j)$ for every π

REPRESENTATION OF A LIMIT

- probability measure μ on $[0,1]^2$ with unit marginals $\mu([a,b] \times [0,1]) = \mu([0,1] \times [a,b]) = b - a$ Hoppen, Kohayakawa, Moreira, Ráth and Sampaio
- μ -random permutation

choose n random points, x- and y-coordinates

REPRESENTATION OF A LIMIT

- probability measure μ on $[0,1]^2$ with unit marginals $\mu([a,b] \times [0,1]) = \mu([0,1] \times [a,b]) = b - a$ Hoppen, Kohayakawa, Moreira, Ráth and Sampaio
- μ -random permutation

choose n random points, x- and y-coordinates

Thank you for your attention!