Combinatorial limits and their applications in extremal combinatorics

Part 2

Dan Král'
Masaryk University and
University of Warwick

Chernoff Bound

- independent zero-one random variables Z_{1}, \ldots, Z_{n} concentration of $X=Z_{1}+\cdots+Z_{n}$ around $\mathbb{E} X$
- Chernoff Bound
$\mathbb{P}(|X-\mathbb{E} X| \geq \delta \mathbb{E} X) \leq 2 e^{\frac{-\delta^{2} \mathbb{E} X}{3}}$ for every $\delta \in[0,1]$
- if each Z_{i} is one with probability p, then
$\mathbb{P}(|X-p n| \geq \delta p n) \leq 2 e^{\frac{-\delta^{2} p n}{3}}$

MARTINGALES

- martingale is a sequence of random variables X_{n} $\mathbb{E}\left(X_{n+1} \mid X_{1}, \ldots, X_{n}\right)=X_{n}$ for every $n \in \mathbb{N}$
- Azuma-Hoeffding inequality suppose that $\mathbb{E} X_{n}=X_{0}$ and $\left|X_{n}-X_{n-1}\right| \leq c_{n}$ $\mathbb{P}\left(\left|X_{n}-X_{0}\right| \geq t\right) \leq 2 e^{\frac{-t^{2}}{2 \sum_{k=1}^{n} c_{k}^{2}}}$
- Doob's Martingale Convergence Theorem (corr.) if $\left|X_{n}\right|<K$, then $X_{n} \rightarrow X$ almost everywhere

Questions?

Dense graph convergence

- $d(H, G)=$ probability $|H|$-vertex subgraph of G is H
- a sequence $\left(G_{n}\right)_{n \in \mathbb{N}}$ of graphs is convergent if $d\left(H, G_{n}\right)$ converges for every H
- examples of convergent sequences: complete and complete bipartite graphs K_{n} and $K_{\alpha n, n}$ Erdős-Rényi random graphs $G_{n, p}$

Limit object: GRAPHON

- graphon $W:[0,1]^{2} \rightarrow[0,1]$, s.t. $W(x, y)=W(y, x)$
- W-random graph of order n random points $x_{i} \in[0,1]$, edge probability $W\left(x_{i}, x_{j}\right)$
- $d(H, W)=$ prob. $|H|$-vertex W-random graph is H
- W is a limit of $\left(G_{n}\right)_{n \in \mathbb{N}}$ if $d(H, W)=\lim _{n \rightarrow \infty} d\left(H, G_{n}\right)$
\square

Questions?

Graphons AS LIMIts

- Uniqueness of a graphon representing a sequence.
- Is every graphon a limit of convergent sequence?
- Does every convergent sequence have a limit?

W-RANDOM GRAPHS CONVERGE

- A sequence of W-random graphs with increasing orders converges with probability one.
- fix $n \in \mathbb{N}$, a graph H and a graphon W
- $X_{i}=$ exp. number of H in an n-vertex W-rand. graph after fixing the first i vertices and edges between them
- apply Azuma-Hoeffding inequality with $c_{i}=n^{|H|-1}$
$\mathbb{P}\left(\left|X_{n}-X_{0}\right| \geq \varepsilon n^{|H|}\right) \leq 2 e^{-\varepsilon^{2} n / 2}$
$\mathbb{P}\left(\left|X_{n}-X_{0}\right| \geq t\right) \leq 2 e^{\frac{-t^{2}}{2 \sum_{k=1}^{n} c_{k}^{2}}}$

W-RANDOM GRAPHS CONVERGE

- A sequence of W-random graphs with increasing orders converges with probability one.
- $X_{i}=$ exp. number of H in an n-vertex W-rand. graph after fixing the first i vertices and edges between them $\mathbb{P}\left(\frac{\left|X_{n}-X_{0}\right|}{n^{|H|}} \geq \varepsilon\right) \leq 2 e^{-\varepsilon^{2} n / 2}$
- the sum of $2 e^{-\varepsilon^{2} n / 2}$ is finite for every $\varepsilon>0$
- Borel-Cantelli \Rightarrow the sequence converges with prob. one
- $X_{0} \approx \frac{d(H, W) n^{|H|}}{|H|!} \Rightarrow$ the graphon W is its limit

Questions?

Graphons AS LIMITS

- Uniqueness of a graphon representing a sequence.
- Is every graphon a limit of convergent sequence?
- Does every convergent sequence have a limit?

GRAPH REGULARITY

- Frieze-Kannan regularity, Szemerédi regularity
- $\forall \varepsilon>0 \exists K_{\varepsilon}$ such that every graph G has an ε-regular equipartition V_{1}, \ldots, V_{k} with $k \leq K_{\varepsilon}$ $\left|\left|V_{i}\right|-\left|V_{j}\right|\right| \leq 1$ for all i and j
- equipartition $V_{1}, \ldots, V_{k} \rightarrow$ density matrix $A_{i j}=\frac{e\left(V_{i}, V_{j}\right)}{\left|V_{i}\right|\left|V_{j}\right|}$
- $\forall \delta>0, H \exists \varepsilon>0$ such that the density matrix of an ε-regular partition determines $d(H, G)$ upto an δ-error
- the lemma holds with prepartitions

Existence of Limit graphon

- fix a convergent sequence $G_{i}, i \in \mathbb{N}$, of graphs
- set $\varepsilon_{j}=2^{-j}$ and fix ε_{1}-regular partition of G_{i} fix ε_{j+1}-regular partition refining the ε_{j}-regular one
- take a subsequence G_{i}^{\prime} of G_{i} such that all but finitely many ε_{j}-regular partitions have the same num. parts
- let $A^{i j}$ be the density matrix for G_{i} and ε_{j}
- take a subsequence $G_{i}^{\prime \prime}$ of G_{i}^{\prime} such that $A^{i j}$ coordinate-wise converge for every j

Existence of limit graphon

- a convergent sequence G_{i}, density matrices $A^{i j}$ let A^{j} be the coordinate-wise limit of $A^{i j}$
- interpret A^{j} as a random variable on $[0,1]^{2}$ and apply Doob's Martingale Convergence Theorem in this way, we obtain a graphon W
- relate $d(H, W)$ to the density of H based on A^{j}

Questions?

OTHER COMBINATORIAL OBJECTS

- dense graph convergence
convergence of substructure densities
- extendable to other combinatorial structures directed graphs, edge-colored graphs, hypergraphs partial orders, permutations, ...
- sparse graph convergence

Benjamini-Schramm convergence, local-global conv., partition convergence, large deviation convergence, ...

Permutations

- permutation of order n : order on numbers $1, \ldots, n$ subpermutation: 453216 $\longrightarrow 213$
- density of a permutation π in a permutation Π :

$$
d(\pi, \Pi)=\frac{\# \text { subpermutations of } \Pi \text { that are } \pi}{\# \text { all subpermutations of order } \pi}
$$

- $\left(\Pi_{j}\right)_{j \in \mathbb{N}}$ convergent if $\exists \lim _{j \rightarrow \infty} d\left(\pi, \Pi_{j}\right)$ for every π

Representation of A Limit

- probability measure μ on $[0,1]^{2}$ with unit marginals $\mu([a, b] \times[0,1])=\mu([0,1] \times[a, b])=b-a$
Hoppen, Kohayakawa, Moreira, Ráth and Sampaio
- μ-random permutation choose n random points, x - and y-coordinates

Representation of A Limit

- probability measure μ on $[0,1]^{2}$ with unit marginals $\mu([a, b] \times[0,1])=\mu([0,1] \times[a, b])=b-a$
Hoppen, Kohayakawa, Moreira, Ráth and Sampaio
- μ-random permutation choose n random points, x - and y-coordinates

Questions?

Thank you for your attention!

