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Problem 1

The first open problem gives a potential characterization of the
Q-polynomial symmetric association schemes.

Motivation. Assume that I = (X, {R;}%_,) is a symmetric
association scheme that is Q-polynomial with respect to the
ordering {E;}¢_, of the primitive idempotents.

Let V = CX denote the standard module of T'.
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Problem 1 motivation, cont.

Abbreviate
Vi=EV (0 <i<d).
For 0 < n < d define
Vf" = Span(Vio Vio-- 0 V) (n copies)
where o is entry-wise multiplication.

We interpret V0 = Span{1}, where 1 is the all-ones vector in V.
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Problem 1 motivation, cont.

Since the ordering {E;}9_, is Q-polynomial, we have
Vo+ Vit 4+ Vi= V04 vl vy
for 0 <ij<d.

We now reverse the logical direction...
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Problem 1 statement

Problem

Let ' = (X, R) denote an undirected, connected, regular graph,
with adjacency matrix A and standard module V.

Let {\/;}7:0 denote an ordering of the eigenspaces of A.
Assume that

o+ Vit 4+ Vi= VP04 Vel VY
for 0 <ij<d.

Show that A generates the Bose-Mesner algebra of a
symmetric association scheme on X (or find counterexamples).

v
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Problem 2

The second open problem is about the subconstituent algebra of
a distance-regular graph.

Let ' = (X, R) denote a distance-regular graph, with diameter d,
adjacency matrix A, and standard module V.
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Problem 2, cont.

For x € X let X denote the vector in V that has x-coordinate 1
and all other coordinates 0.

The vectors {X|x € X} form a basis for V.
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Problem 2, cont.

For x € X and 0 </ < d let E = E/(x) denote the diagonal
matrix in Matx(C) with (y, y)-entry

. 1 ifdx,y) =i
(Ef)yy = . () . y e X.
0 if O(x,y)#i
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Problem 2, cont.

Definition

For x € X let T = T(x) denote the subalgebra of Matx(C)
generated by A and {E;}9 .

We call T the subconstituent algebra of [ with respect to x.
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Problem 2, cont.

For the rest of this section, fix distinct x,y € X.

Definition
Let T(x,y) denote the subalgebra of Matx(C) generated by T(x)
and T(y).

We call T(x,y) the subconstituent algebra of I' with respect
to x,y.
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Problem 2, cont.

The following lemmas are routine.

The standard module V is a direct sum of irreducible
T (x, y)-modules.

There exists a unique irreducible T (x,y)-module that contains the
all-ones vector 1. This module is T(x,y)1.
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Problem 2, cont.

We have

T(x)y € T(x,¥)1, T(y)% C T(x,y)1.
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Problem 2 statement

Problem

Assume that I is Q-polynomial. Show that

T(x)y = T(x,y)1 = T(y)%.

More generally, decompose T (x,y)1 into a direct sum of
irreducible T (x)-modules and a direct sum of irreducible
T(y)-modules. We expect that in each direct sum, the summands
are mutually nonisomorphic.

Paul Terwilliger Three Open Problems



Problem 3

The third open problem is about some central elements in the
subconstituent algebra of a distance-regular graph.

Let ' = (X,R) denote a distance-regular graph, with adjacency
matrix A and standard module V.

Let E denote a @-polynomial primitive idempotent of I'.
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Problem 3, cont.

Write

d
E=IX|"1) 67A
i=0
where A; is the ith distance matrix of I.

The scalars {#7}9_, form the dual eigenvalue sequence of I with
respect to E.

For x € X, the dual adjacency matrix A* = A*(x) is defined by

d
A" =) 6iE
i=0
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Problem 3, cont.

The subconstituent algebra T = T(x) is generated by A, A*.

The matrices A, A* satisfy the tridiagonal relations

0= [A, A2A* — BAA*A + A*A% — y(AA* + A*A) — pAY],
0 = [A*, A2A — BA*AA* + AA*2 — 4*(A*A + AA*) — 0* A,

for appropriate real scalars 3,~,~*, o, 0*.
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Problem 3, cont.

We recall the thin condition.

An irreducible T-module W is thin whenever E,-*W has dimension
at most one for 0 </ < d.

In this case, E;W has dimension at most one for 0 </ < d.
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Problem 3, cont.

If W is thin then on W,

A2A* — BAA*A 4 A* A2 — y(AA* 4 A*A) — pA*
=7 A2 + wA+ 1l

AR A — BA*AA* + AA™ — 4*(A*A 4 AA*) — 0" A
= YA + wA* + 0",

where w, n,n* are appropriate real scalars that depend on W.

These are the Askey-Wilson relations.
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Problem 3, cont.

Lemma (Worawannotai 2012)

Assume that every irreducible T-module is thin. Then there exist
central elements Q, G, G* € T such that

A2A* — BAA*A 4 A*A? — 4(AA* 4+ A*A) — pA*
=7*A2 £ QA+ G,

A2 A — BA*AA* + AA™ — 4*(A*A 4 AA*) — 0" A
= yA*2 4 QA* + G*.
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Problem 3 statement

Assume that every irreducible T-module is thin.
(i) Find the entries of Q, G, G* (for some examples).

(ii) We conjecture that for y,z € X the (y,z)-entry of Q, G, G*
are all zero unless d(y,z) < 2.

(iii) Find the combinatorial significance of Q, G, G*.
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Problem 3 comments

Chalermong Worawannotai (2012) has results about Problem 3 for
the dual polar graphs.

lan Seong (2025) has results about Problem 3 for the Grassmann
graph J,(n, d).

THE END
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