Three Open Problems

Paul Terwilliger

University of Wisconsin-Madison

Problem 1

The first open problem gives a potential characterization of the Q-polynomial symmetric association schemes.

Motivation. Assume that $\Gamma = (X, \{R_i\}_{i=0}^d)$ is a symmetric association scheme that is Q-polynomial with respect to the ordering $\{E_i\}_{i=0}^d$ of the primitive idempotents.

Let $V = \mathbb{C}X$ denote the **standard module** of Γ .

Problem 1 motivation, cont.

Abbreviate

$$V_i = E_i V$$
 $(0 \le i \le d).$

For $0 \le n \le d$ define

$$V_1^{\circ n} = \operatorname{Span}(V_1 \circ V_1 \circ \cdots \circ V_1)$$
 (n copies)

where o is **entry-wise multiplication**.

We interpret $V_1^{\circ 0} = \operatorname{Span}\{\mathbf{1}\}$, where $\mathbf{1}$ is the all-ones vector in V.

Problem 1 motivation, cont.

Since the ordering $\{E_i\}_{i=0}^d$ is Q-polynomial, we have

$$V_0 + V_1 + \cdots + V_i = V_1^{\circ 0} + V_1^{\circ 1} + \cdots + V_1^{\circ i}$$

for $0 \le i \le d$.

We now reverse the logical direction...

Problem 1 statement

Problem

Let $\Gamma = (X, \mathcal{R})$ denote an undirected, connected, regular graph, with adjacency matrix A and standard module V.

Let $\{V_i\}_{i=0}^d$ denote an ordering of the eigenspaces of A.

Assume that

$$V_0 + V_1 + \cdots + V_i = V_1^{\circ 0} + V_1^{\circ 1} + \cdots + V_1^{\circ i}$$

for $0 \le i \le d$.

Show that A generates the Bose-Mesner algebra of a symmetric association scheme on X (or find counterexamples).

Problem 2

The second open problem is about the **subconstituent algebra of** a **distance-regular graph**.

Let $\Gamma = (X, \mathcal{R})$ denote a distance-regular graph, with diameter d, adjacency matrix A, and standard module V.

For $x \in X$ let \hat{x} denote the vector in V that has x-coordinate 1 and all other coordinates 0.

The vectors $\{\hat{x}|x\in X\}$ form a basis for V.

Definition

For $x \in X$ and $0 \le i \le d$ let $E_i^* = E_i^*(x)$ denote the diagonal matrix in $\operatorname{Mat}_X(\mathbb{C})$ with (y, y)-entry

$$(E_i^*)_{y,y} = \begin{cases} 1 & \text{if } \partial(x,y) = i \\ 0 & \text{if } \partial(x,y) \neq i \end{cases} \quad y \in X.$$

Definition

For $x \in X$ let T = T(x) denote the subalgebra of $\operatorname{Mat}_X(\mathbb{C})$ generated by A and $\{E_i^*\}_{i=0}^d$.

We call T the **subconstituent algebra** of Γ with respect to x.

For the rest of this section, fix distinct $x, y \in X$.

Definition

Let T(x,y) denote the subalgebra of $\operatorname{Mat}_X(\mathbb{C})$ generated by T(x) and T(y).

We call T(x, y) the subconstituent algebra of Γ with respect to x, y.

The following lemmas are routine.

Lemma

The standard module V is a direct sum of irreducible T(x,y)-modules.

Lemma

There exists a unique irreducible T(x,y)-module that contains the all-ones vector $\mathbf{1}$. This module is $T(x,y)\mathbf{1}$.

Lemma

We have

$$T(x)\hat{y} \subseteq T(x,y)\mathbf{1},$$

$$T(y)\hat{x} \subseteq T(x,y)\mathbf{1}$$
.

Problem 2 statement

Problem

Assume that Γ is Q-polynomial. Show that

$$T(x)\hat{y} = T(x,y)\mathbf{1} = T(y)\hat{x}.$$

More generally, decompose $T(x,y)\mathbf{1}$ into a direct sum of irreducible T(x)-modules and a direct sum of irreducible T(y)-modules. We expect that in each direct sum, the summands are mutually nonisomorphic.

Problem 3

The third open problem is about **some central elements in the subconstituent algebra** of a distance-regular graph.

Let $\Gamma = (X, \mathcal{R})$ denote a distance-regular graph, with adjacency matrix A and standard module V.

Let E denote a Q-polynomial primitive idempotent of Γ .

Write

$$E = |X|^{-1} \sum_{i=0}^d \theta_i^* A_i$$

where A_i is the *i*th distance matrix of Γ .

The scalars $\{\theta_i^*\}_{i=0}^d$ form the **dual eigenvalue sequence** of Γ with respect to E.

For $x \in X$, the **dual adjacency matrix** $A^* = A^*(x)$ is defined by

$$A^* = \sum_{i=0}^d \theta_i^* E_i^*.$$

The subconstituent algebra T = T(x) is generated by A, A^* .

The matrices A, A^* satisfy the **tridiagonal relations**

$$0 = [A, A^{2}A^{*} - \beta AA^{*}A + A^{*}A^{2} - \gamma(AA^{*} + A^{*}A) - \varrho A^{*}],$$

$$0 = [A^{*}, A^{*2}A - \beta A^{*}AA^{*} + AA^{*2} - \gamma^{*}(A^{*}A + AA^{*}) - \varrho^{*}A],$$

for appropriate real scalars $\beta, \gamma, \gamma^*, \varrho, \varrho^*$.

We recall the thin condition.

An irreducible T-module W is **thin** whenever E_i^*W has dimension at most one for $0 \le i \le d$.

In this case, E_iW has dimension at most one for $0 \le i \le d$.

If W is thin then on W,

$$A^{2}A^{*} - \beta AA^{*}A + A^{*}A^{2} - \gamma (AA^{*} + A^{*}A) - \varrho A^{*}$$

$$= \gamma^{*}A^{2} + \omega A + \eta I,$$

$$A^{*2}A - \beta A^{*}AA^{*} + AA^{*2} - \gamma^{*}(A^{*}A + AA^{*}) - \varrho^{*}A$$

$$= \gamma A^{*2} + \omega A^{*} + \eta^{*}I,$$

where ω, η, η^* are appropriate real scalars that depend on W.

These are the **Askey-Wilson relations**.

Lemma (Worawannotai 2012)

Assume that every irreducible T-module is thin. Then there exist central elements Ω , G, $G^* \in T$ such that

$$A^{2}A^{*} - \beta AA^{*}A + A^{*}A^{2} - \gamma (AA^{*} + A^{*}A) - \varrho A^{*}$$

$$= \gamma^{*}A^{2} + \Omega A + G,$$

$$A^{*2}A - \beta A^{*}AA^{*} + AA^{*2} - \gamma^{*}(A^{*}A + AA^{*}) - \varrho^{*}A$$

$$= \gamma A^{*2} + \Omega A^{*} + G^{*}.$$

Problem 3 statement

Problem

Assume that every irreducible T-module is thin.

- (i) Find the **entries** of Ω , G, G^* (for some examples).
- (ii) We conjecture that for $y, z \in X$ the (y, z)-entry of Ω, G, G^* are all zero unless $\partial(y, z) \leq 2$.
- (iii) Find the combinatorial significance of Ω , G, G^* .

Problem 3 comments

Chalermong Worawannotai (2012) has results about Problem 3 for the **dual polar graphs**.

Ian Seong (2025) has results about Problem 3 for the **Grassmann** graph $J_q(n, d)$.

THE END